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Simulations to determine sizes of perturbed discs for encounters common in star clusters

INTRODUCTION

• Most young stars initially surrounded by
protoplanetary discs

• Discs: precursors of planetary systems

Observed disc sizes

• Radius containing 90% of luminosity
• Typical disc sizes: 100− 200 AU

• Most stars form in clusters [1]
• In dense clusters, encounters with other

stars are common [2]

STAR-DISC ENCOUNTERS

Figure 1: Star with protoplanetary disc during an encounter.

• Encounter: disc material removed or
redistributed

• Disc size changed by encounter
• Disc truncated at ≈ 1/3 periastron? [3]

Encounter simulations

• Low-mass disc
• Prograde, coplanar, parabolic encounter
• Star-disc encounters can be generalised

to disc-disc encounters [4]
• Parameter range like in ONC [2]
• Task: Find new “edge” of disc

Size definition for simulations

Sizes for extensive parameter space

DISC-SIZE DETERMINATION
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Time: 3025 yFigure 2: Disc with initially 100 AU radius around a 1 M�star perturbed by a
20 M�perturber with 700 AU periastron distance. The black circle shows

the final disc size obtained with the criterion described on the right.

• Depending on encounter type: many
particles on eccentric orbits

• No straightforward definition of size
• Time average of surface density

distribution over 1000 yr after encounter
• Mimic observational size determination
• Use steepest gradient in outermost

density contrast (Fig. 3)
• Error estimate: distance to inner edge

of density contrast

Have a look at a encounter visualisation on
http://tiny.cc/encounter_movie
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Figure 3: Surface density for a disc with initially 100 AU radius around a 1 M�star
perturbed by a 20 M�perturber with 700 AU periastron distance. The dashed red

line shows the size obtained with the criterion described on the left.

DEPENDENCE ON ENCOUNTER PARAMETERS
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Figure 4: Disc sizes from simulation data for several mass ratios (blue lines). For
comparison the size obtained with a truncation at 1/3 of periastron distance

is shown in black.

• Strong dependence of disc size on
encounter parameters:
- periastron distance p [rinit]
- mass ratio m = M2/M1

• Disc truncated at 1/3 of periastron
distance only valid for small parameter
range
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Figure 5: Disc sizes from simulation data for several mass ratios (blue lines). The red
lines show the sizes obtained with our fit formula (see below).

• Function fitting the obtained sizes well
within errors (. 10%):

r
rinit

= 0.3·p0.85
4√m

r = final disc radius, rinit = initial disc radius, m = mass ratio, p = periastron [rinit ]

CONCLUSION

• Disc size definition:
Steepest gradient in surface density

• Fit function for sizes over parameter
range in clusters:
m = M2/M1 = [0.3− 90]
p & [0.1− 2] (depending on m)

• Applicable to all types of clusters
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