
  

Accretion 

      Let us compute the total available energy.
   Considering a proton falling in from infinity, we can write
 (Longair   p. 134)

                                       G  M   m 
                                     

                      r
  ½ m v2

free-fall=

When the matter reaches the surface of the star at r=R,

the kinetic energy of the free-fall  (part of it) has to be radiated 
away   as heat. 



  

If the rate at which mass is accreted onto the star is d m/dt, 

the rate  at which kinetic energy is dissipated at the star surface is
½  dm/dt   v^2, 

and hence the luminosity of the source is  

                                       G  M   dm/dt 
                                     

                      R
L =  ½ dm/dt  v2

free-fall=
c2

--
c2

Accretion efficiency

Efficiency =   η =   GM / c2 R  
                                                           
    

L =   η  dm/dt  c2LUMINOSITY   =



  

Efficiency =   η =   GM / c2 R=  ½   Rsch/ R

    RRsch   =      sch   =      2GM/c2GM/c22          
L =   η  dm/dt  c2LUMINOSITY   =

This is a remarkable formula .
It can be seen that written in this form  η   is the  efficiency  of conversion of 
the rest mass energy of the accreted  matter into heat .

According to the above calculation, the efficiency of energy conversion 
simply  depends upon how compact the star is.

Thus ,  accretion  is a  powerful  source of energy. This efficiency of energy  
conversion  can be compared   with the     η   of nuclear energy generation.



  



  

Accretion process:   Efficiency =   η =   GM / c2 R

Thus ,  accretion  is a  powerful  source of energy. 

This efficency of energy  conversion  can be compared   with the     η   of 
nuclear energy generation.

     Neutron Star – rin ~  10 km   η= 0.1   --------------------------->      10%

For nuclear reactions in stars  η ~ 0.007 ----------------------->         <1% !!! 

Nuclear fusion  process:   
Efficiency =   η =  (4 mp-m α  ) / 4 mp      

 
  (4 x 1.6726 10-24  - 6.642  x 10-24 )
                                                                             =  0.007
                       4 x 1.6726 10-24 

            

α

( ..of the rest mass energy of the accreted  matter into heat) .

For nuclear reactions in stars  η ~ 0.007 ----------------------->         <1% !!! 



  

Accretion efficiency

Efficiency =   η =   GM / c2 R=  ½   rsch/ R

White dwarf  M=1 M sol,  R=5000 Km  η= 3  x   10-4

Neutron Star – rin ~  10 km   η= 0.1

Black  Hole  - rin = 3rs   η ~ 0.06

But from GR for  rotating black holes  η = 0.42-------------->     >40%

For nuclear reactions in stars  η ~ 0.007 ----------------------->    <1% !!! 

rrschsch = 2 GM/c = 2 GM/c22



Outward angular momentum 
transport

A B

Ring A moves faster than ring B. 
Friction between the two will try 
to slow down A and speed up B. 

Keplerian rotation

So ring A must move inward! Ring B moves outward, unless it, 
too, has friction (with a ring C, which has friction with D, etc.).



The “standard model”…
Viscous accretion disks

 Suppose that there is some kind of “viscosity” in the 
disk 

− Different annuli of the disk rub against each other and 
exchange angular momentum

− Results in most of the matter moving inwards and 
eventually accreting

− Angular momentum carried outwards by a small amount of 
material

 Process producing this “viscosity” might also be 
dissipative… could turn gravitational potential energy 
into heat (and eventually radiation)



 

 Standard Accretion Disk Model (Shakura 
and  Sunyaev 1973) :   α 

        
MRI (Balbus and Hawley 1991) can generate 

magnetic turbulence and enhance the 
efficiency of angular momentum transport



 

State Transition in Accretion 
Disks

 Optically thick, geometrically thin disk 
(high/soft)

• Optically thin disk （ low/hard)

rad =

energy

X-ray intensity

X-ray intensity

  energy

adv.



  

Eddington Limit
Radiation coming from the disk carries radiation pressure.

Radiation pressure  is felt by accreting matter -- 

eventually radiation pressure becomes higher than gravitational pull of compact 
object/star and accretion stops.

Radiation pressure force will be proportional to luminosity (more photons=more
radiation pressure) 

The limiting luminosity at which an object can accrete  is:

                                                 4 πGMmp

Derived for spherical accretion but approximately correct also for accretion diskD

 

σT
Ledd  =

σΤ = Thomson cross section



  

Obtain Ledd by setting             Fgrav=Frad

Fgrav (gravitational force per electron) = GM (mp+me) /r2 ~  GM mp/r2 

Frad = (Number photons  x Thompson cross-section)  x p

Energy of typical photon = hν
The  number of photons crossing unit area in unit time at radius r is:
                                                                                                  L/ hν 4πr2 

Number of collisions per electron per unit time= L σT/ hν 4πr2

Each photon gives a momentum p= hν /c   to the electron in each collison 
 
                     Frad = LσT/ hν 4πr2     x   p = LσT/4πr2c
(The radiation pressure acts upon the electrons, however protons and 
electrons coupled by Coulomb interaction)

O



  

Obtain Ledd by setting Fgrav=Frad

                     Fgrav =  GM mp/r2  
                     Frad  = LσT/4πr2c

                Ledd   σT/4πr2c    =   GM mp/r2  

                  Ledd     =   4πc G  M mp   /σT

               Ledd     =    1.3  1038 M/M0     erg/sec



  

X-ray binary luminosities
 X-ray binaries typically have 

LX<<1038erg/s

 LMXRBs:
− Flat distribution at faint-end 
− max luminosities ~ 1038-

1039erg/s.
 HMXRBs:

− Power-law distribution
− Max LX~ 1040erg/s

Gilfanov 2004

X-ray Astronomy Summer School, Athens 2006



  

Ledd  = 1.3  1038 M/M0  erg/sec

Ledd/L0=105 M/M0

for M/M0   in the range of 106-8M/M0

Ledd/L0     1011-13 
    

Supermassive BH





  

ap

as

V

P2 = 
4π2 (as + ap)3

G(ms + mp) 

ms
mp

ap



  

Measuring Masses of Compact Objects

Dynamical study:  compact objectx and companion starc

(for binary period, P, and inclination angle, i )
Kepler’s 3rd Law:    4 π2 (ax + ac)3 = GP2 (Mx + Mc)
center of mass: Mx ax  = Mc  ac 
radial velocity amplitude      Kc = 2 π ac sin i  P-1 

“Mass Function”:  f(M) =  P K3 / 2πG  =  Mx sin3(i) / (1 + Mc/Mx)2  <  Mx

Dynamical Black Hole:   Mx > 3 Mo  (maximum for a neutron star)

BH Candidates: no pulsations + no X-ray bursts + properties of BHBs



Doppler shifts

Doppler shifts of the spectral lines yield the 
radial (i.e. toward the observer) velocity of 
the star

z=
λ o b s− λrest

λ rest
=Δλ

λ rest
v r

c
≈z     if z <<1



Spectroscopic binaries: circular orbits

•If the orbit is in the plane of the sky (i=0) we observe no radial velocity.
•Otherwise the radial velocities are a sinusoidal function of time.  The 
minimum and maximum velocities (about the centre of mass velocity) 
are given by

v1r
m ax= v1 sin i

v2r
m ax= v2 sin i



  

eccentricity

Elliptical Orbits

= OF1/a

O



  

Radial velocity shape as a function of eccentricity:



  

Eccentric orbit  can sometimes escape detection:

With poor sampling this star would be considered constant



Mass Function





“It is worth mentioning here that the accumulation of accreted material on the
surface of a neutron star triggers thermonuclear bursts. These are called bursts of 
Type I. 

No Type I burst has ever been observed from a compact object where optical 
observations resulted in a mass above 3 M⊙.
That fact might confirm that in black holes there is no surface where material 
can  accumulate “(Narayan & Heyl 2002). 

Observations of Type I bursts  give a direct evidence for  a neutron star.



Neutron Star Limit:  3 MNeutron Star Limit:  3 Moo
(dP/d(dP/dρρ))0.50.5  <  c  <  c

Rhoades & Ruffini 1974Rhoades & Ruffini 1974
Chitre & Hartle 1976Chitre & Hartle 1976

Kalogera &  Baym 1996Kalogera &  Baym 1996

Black Holes (BH)Black Holes (BH)
MMxx = 3-18 M = 3-18 Moo

Neutron Stars (NS)Neutron Stars (NS)
(X-ray & radio pulsars)(X-ray & radio pulsars)

MMxx ~ 1.4 M ~ 1.4 Moo

Compact Object MassCompact Object Mass



Demorest, P. B.; Pennucci, T.; Ransom, S. M.; Roberts, M. S. E.;

 Hessels, J. W. T.

Nature, Volume 467, Issue 7319, pp. 1081-1083 (2010).

 .... Here we present radio timing observations of the binary millisecond 

pulsar J1614-2230 ......We calculate the pulsar mass to be 

(1.97+/-0.04) Msolar



Inventory of Black Hole BinariesInventory of Black Hole Binaries

BH Binary:BH Binary:    Mass from binary analysesMass from binary analyses

          Dynamical BHBsDynamical BHBs                
Milky WayMilky Way       18      18     
LMCLMC         2        2         
local grouplocal group         1 (M33)        1 (M33)             
------------------------------------------    ---------------------   ---------------------                           
totaltotal        21       21     

TransientsTransients        17       17     



BlackBlack
 Holes  Holes 
in the in the 
Milky Milky 
WayWay

18 BHBs in Milky Way

16 fairly well 
constrained 

(

Scaled, tilted, and
colored for surface temp.

of companion star.
Jerry Orosz
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