Formation of MHD jets: flares as triggers of internal shocks

Formation of MHD jets: flares as triggers of internal shocks

Contents:

- -> Model scenario: MHD jets
- -> Jet formation simulations:
 - Disk jets & stellar jets:magnetization profile& collimation
 - Disk jets + central dipole: reconnection, flares
 - Relativistic jets (Oliver Porth)

Christian Fendt

Max Planck Institute for Astronomy, Heidelberg

Astrophysical jets: "Standard model"

MHD model of jet formation:

-> 5 basic questions of jet theory

collimation & acceleration of a disk/stellar wind into a jet

ejection of disk/stellar material into wind?

- accretion disk structure?
- origin of magnetic field?
- jet propagation / interaction with ambient medium

Astrophysical jets: Magnetohydrodynamics (MHD)

- MHD concept: ionized, neutral fluid: average quantities: $\vec{j}\equiv q_{\rm e}\vec{v}_{\rm e}\rho_{\rm e}+q_{\rm i}\vec{v}_{\rm i}\rho_{\rm i}$
- ideal MHD: infinite conductivity, "frozen-in" field lines:

• MHD equations (to be solved numerically):

$$\partial_{t}\rho + \nabla \cdot (\rho \vec{v}) = 0$$

$$\rho \left(\partial_{t}\vec{v} + (\vec{v} \cdot \nabla)\vec{v}\right) + \nabla P + \rho \nabla \Phi - \vec{j} \times \vec{B} = 0$$

$$\rho \left(\partial_{t}e + (\vec{v} \cdot \nabla)e\right) + P(\nabla \cdot \vec{v}) - \eta_{D}|\vec{j}|^{2}/c^{2} = 0$$

$$\partial_{t}\vec{B} = \nabla \times \left(\vec{v} \times \vec{B} - \eta_{D}\vec{j}/c\right)$$

$$\nabla \cdot \vec{B} = 0, \quad \nabla \times \vec{B} = 4\pi \vec{j}/c$$

Axisymmetric flows:

- -> poloidal, toroidal field: $B = B_p + B_\phi$
- -> magnetic flux surfaces:

$$\Psi(R,Z) \sim \int \vec{B}_{
m P} \cdot d\vec{A}$$

Lorentz force components (1)

-> projected on
$$\Psi$$
 : $ec{F}_L \equiv ec{F}_{L,||} + ec{F}_{L,\perp}$

-> (de/) accelerating:
$$ec{F}_{L,||} \equiv ec{j}_{\perp} imes ec{B}_{\phi}$$

-> (de-) collimating:
$$ec{F}_{L,\perp} \equiv ec{j}_{||} imes ec{B}$$

Astrophysical jets:

Magnetohydrodynamics (MHD)

- MHD concept: ionized, neutral fluid: average quantities: $\vec{j}\equiv q_{
 m e}\vec{v}_{
 m e}
 ho_{
 m e}+q_{
 m i}\vec{v}_{
 m i}
 ho_{
 m i}$
- ideal MHD: infinite conductivity, "frozen-in" field lines:

• MHD equations (to be solved numerically):

$$\partial_{t}\rho + \nabla \cdot (\rho \vec{v}) = 0$$

$$\rho \left(\partial_{t}\vec{v} + (\vec{v} \cdot \nabla)\vec{v}\right) + \nabla P + \rho \nabla \Phi - \vec{j} \times \vec{B} = 0$$

$$\rho \left(\partial_{t}e + (\vec{v} \cdot \nabla)e\right) + P(\nabla \cdot \vec{v}) - \eta_{D}|\vec{j}|^{2}/c^{2} = 0$$

$$\partial_{t}\vec{B} = \nabla \times \left(\vec{v} \times \vec{B} - \eta_{D}\vec{j}/c\right)$$

$$\nabla \cdot \vec{B} = 0, \quad \nabla \times \vec{B} = 4\pi \vec{j}/c$$

Lorentz force components (2):

-> magnetic pressure & tension:

$$\vec{F}_L = \nabla \left(\frac{|\vec{B}|^2}{8\pi} \right) + \frac{1}{4\pi} \left(\vec{B} \cdot \nabla \right) \vec{B}$$

-> (de/) accelerating, (de-) collimating

-> e.g.: pure dipole is force-free: $F_L = 0$

Astrophysical jets:

Acceleration & collimation

Magneto-centrifugal acceleration:

(Blandford & Payne 1982)

- -> field lines corotate w/ disk, "beads on wire"
- -> strong poloidal field
- -> field line inclination < 60°
 - -> unstable equilibrium, (magneto-) centrifugal sling-shot

Self-collimation of MHD jets:

Alfven radius: kinetic ~ magnetic energy:

- -> poloidal field twisted by inertia -> toroidal field component
- -> collimation by toroidal field tension

MHD acceleration: Lorentz force $\sim j \times B_{\phi}$

MHD jet simulations

Numerical proof of jet MHD acceleration & self-collimation

(Ouyed & Pudritz 1997; Ustyugova et al. 1996; a.m.m.):

Model assumptions:

- -> ideal MHD, axisymmetry, polytropic gas + turb. Alfvenic pressure
- -> Keplerian disk = boundary condition: mass flux, inner disk radius
- -> steady state initial condition: force-free field, hydrostatic corona
- -> allows for long-term evolution, parameter runs of different B.C.

colors: gas density, lines: poloidal magnetic field lines

MHD simulations:

Dipolar magnetosphere

Stellar magnetosphere (Fendt & Elstner, A&A 1999, 2000):

- -> quenched stellar dipole anchored in star & Keplerian disk
- -> mass injection from disk & star (B.C.), parameter: Ω^* , B, dM/dt
- -> stable initial state: force-free magnetic field + hydrostatic corona
- -> grid size: 20 x 20 inner disk radii = 40 x 40 stellar radii
- -> long-term evolution: ~2500 (20) inner (outer) disk orbital periods

colors: gas density lines: poloidal field lines / vector potential contours

MHD simulations:

Dipolar magnetosphere

Long-term evolution (Fendt & Elstner, A&A 1999, 2000):

- -> differential rotation between star & disk twists magnetic field
 - -> magnetic pressure-driven expanding bubble
 - -> large-scale dipole breaks up, small-scale dipole remains within disk gap
- -> initial "axial jet" disappears on the long-term: transition from initial magnetohydro-static to new magnetohydro-dynamic equilibrium
- -> quasi steady state reached
 - -> two-component outflow, v ~ 0.5 2 v_Kep: MHD driven disk wind & stellar wind
 - -> no collimation !! (zero net electric current)
- -> axial knots / "instabilities" for low stellar wind mass flux
- -> no "reconnection", ideal MHD

MHD jet collimation:

Pure disk jets

Collimation & magnetic field profile

Mass flux profile / disk magnetic flux profile and jet self-collimation (Fendt ApJ 2006)

-> disk magnetic field profile: $B_p \sim r^{-\mu}$

$$B_p \sim r^{-\mu}$$

-> disk wind magnetization:

$$\sigma \equiv \frac{B_p^2 r^4 \Omega_F^2}{4 \dot{M} c^3} \sim r^{\mu_\sigma}$$

-> degree of collimation:

mass flux in axial & lateral direction

$$\zeta \equiv \frac{\dot{M}_{z}}{\dot{M}_{r}} = \frac{2\pi \int_{0}^{r_{\text{max}}} r\rho v_{z} dr}{2\pi r_{\text{max}} \int_{0}^{z_{\text{max}}} \rho v_{r} dz}.$$

- -> grid size: $(150x300) r_i \sim (7x14) AU \sim observational resolution for stellar jets$
- -> parameter runs: μ , |B|, dM(r)/dt

$$\delta_i = 100, \ \beta_p = \beta_\phi = 1, \ \beta_T = 0.03, \ v_{inj}(r) = 10^{-3} v_K(r), \ \rho_{inj} = 100 \ \rho_{cor}, \ r_{max} = 40, \ z_{max} = 160$$

MHD jet collimation:

Disk magnetic flux profile

Collimation & magnetic field profile

- -> "flat" profile (B, σ) -> efficient collimation
- -> axial "instabilities" for too flat profile (no stationary state)

$$B_{p} \sim r^{-\mu}$$
, $\sigma_{0} \sim r^{\mu_{\sigma}}$, $\rho_{0} \sim r^{-\mu_{\rho}}$

MHD jet collimation:

Disk magnetic flux profile

Collimation & magnetic field profile

Two-component magnetic field configuration (Fendt ApJ 2009):

- -> superposed stellar dipole + disk magnetosphere
- -> mass flux from underlying Keplerian disk (r > 1.0) + stellar wind (r < 0.5)

$$A_{\Phi}(r,z) = A_{disk} \left(\sqrt{r^2 + (z + z_D)^2} - (z + z_D) \right) + A_{star} \frac{r^2}{\left(r^2 + (z + z_D)^2 \right)^{-3/2}}$$

-> other parameter: plasma-β, stellar/disk mass fluxes, turbulent Alfvenic pressure, magnetic diffusivity

Time evolution of disk-star magnetospheres: (example $A_{disk} = -0.1$, $A_{star} = 3.0$)

- rotating star: co-rotation radius = inner disk radius
- resistive MHD: model of turbulent Alfvenic diffusivity, reconnection (!!)
- run time ~ 3600 inner disk orbits (= 6 outer disk orbits)
- intermediate times: -> quasi stationary state, however transient, flares (~CME)
 - -> de-collimation of disk wind by central stellar wind
- long-term evolution: -> quasi stationary states -> cyclic behavior @ large scale?
 - -> central dipole disturbs large-scale structure (Goodson 1999)

grid: 80x80 inner disk radii

= 160x160 stellar radii

colors: gas density

lines: poloidal field lines /

vector potential contours

code: ZEUS

Flare evolution t=1400 - 2300: lateral velocity & momentum re-distribution

Axial mass flux during flare: variation by factor 2-4

-> triggering jet internal shocks / knots (??)

Formation of MHD jets: flares as triggers of internal shocks:

Summary

- (1) Axisymmetric MHD simulations of jet formation:
 - -> disk/star B.C. allows for long-term evolution (t=3600), parameter runs
 - -> iniitial hydrostatic state plus force-free magnetic field
 - -> "self-consistent" model of magnetic diffusivity ~ turbulent Alfvenic pressure
- (2) Disk jet simulations with different disk magnetic flux & mass flux profiles
 - -> unique relation between disk wind magnetisation σ and degree of collimation ζ .
 - -> efficient collimation for flat disk magnetic field / disk wind magnetization profile
 - -> origin of field structure??
 - -> "X-wind" models are unlikely to launch collimated outflows
 - -> disk wind/ dynamo provides flat magnetic field profile (?)
- (3) Simulations of superposed stellar & disk magnetosphere:
 - -> de-collimation of disk wind by stellar wind.
 - -> flares (CME) on t=1000 time scale, duration about t=10-20
 - -> re-configuration of jet transverse velocity & mass flux profile
 - -> variation of jet mass flux by factor 2- 4
 - -> may trigger jet internal shocks / knots (??)
- (4) Outlook: relativistic MHD disk jets, radiative forces, disk structure evolution

Appendix

MHD jet collimation: MHD simulations of magnetospheres

Critical review of disk-as-boundary simulations:

- (+) -> powerful tool to investigate the long-term, large-scale evolution of disk / star / star-disk magnetospheres
 - -> fast tool: only magnetospheric variables are treated:
 - -> (numerical) time steps in disk & outflow differ largely
 - -> strong gradients between disk & corona not need to be resolved
 - -> disk / star boundary condition helps to control simulation
 - -> allows to investigate wide range of parameters & geometries
 - -> ok, as many quantities are not really known: field structure (star / disk), mass loss, disk "physics" (radiative MHD, opacities, turbulence, dynamo)
 - -> interesting for 3D jet formation stability studies (e.g. Ouyed & Pudritz 2003)
 - -> option for comparison / fit to observations
- (-) -> disk physics not included (provides the launching conditions for outflows):
 - -> non-steady mass flux into outflow
 - -> time scales set by disk physics
 - -> feedback from outflow to disk structure
 - -> ad hoc prescription for parameters like mass flow rate, field structure

