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Formation of MHD jets: flares as
triggers of internal shocks

Contents:

-> Model scenario: MHD jets
-> Jet formation simulations:
- Disk jets & stellar jets:
magnetization profile

& collimation

- Disk jets + central dipole:
reconnection, flares

— Relativistic jets (Oliver Porth)
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Astrophysical jets:

“Standard model”
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 collimation & acceleration of a disk/stellai

-> 5 basic questions of jet theory

« ejection of disk/stellar material into wind?
« accretion disk structure?
« origin of magnetic field?

* jet propagation / interaction with ambient medium



Astrophysical jets:

Magnetohydrodynamics (MHD)

« MHD concept: ionized. neutral fluid:

average quantities: 7 = @eUepe + iU pi

* ideal MHD: infinite conductivity,
“frozen-in” field lines:
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e MHD Lorentz force:

« MHD equations (to be solved numerically):

Op+ V- (pv) =0
p (B0 + (0-V) V) + VP + pVd — jx B=0
p e+ (T-V)e) + P(V-0) —plj?/=0
OB =V x (ﬁxé—mﬂ'/c)

V-B=0, VxB=4nj/c
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Axisymmetric flows:
-> poloidal, toroidal field: B = B, + B,

-> magnetic flux surfaces:

U(R, %)~ fBp-dA
Lorentz force components (1)
-> projected on W' : ﬁL — ﬁL [+ ﬁLL
-> (de/) accelerating: FL,H = j_l X By

-> (de-) collimating: FZ}L = jH x B



Astrophysical jets: bbb b

Magnetohydrodynamics (MHD) |

« MHD concept: ionized. neutral fluid: B‘I’ B
average quantities: j = qcUecpe + qiUipi

* ideal MHD: infinite conductivity,
“frozen-in” field lines:

e MHD Lorentz force: FL ~ 7 X B

—
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Lorentz force components (2):

« MHD equations (to be solved numerically): > magnetic pressure & tension:

op+ V- (pv) =0 3 |B*|2 1. j
p (B0 + (0-V) V) + VP + pVd — jx B=0 [ =V o +E(B-V)B
p(Bie + (T-V)e) + P(V-0) = mplj* /=0

até =V X (?7 X B — WD}/C) -> (de/) accelerating , (de-) collimating

—

V-B=0, VxB-= A /e -> e.g.: pure dipole is force-free: F, =0



Astrophysical jets:
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Magneto-centrifugal acceleration:

(Blandford & Payne 1982)
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-> field lines corotate w/ disk, "beads on wire”

-> strong poloidal field
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-> field line inclination < 60°

-> unstable equilibrium, (magneto-) centrifugal sling-shot

Self-collimation of MHD jets:

>

Alfven radius: kinetic ~ magnetic energy:

-> poloidal field twisted by inertia -> toroidal field component

-> collimation by toroidal field tension
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Lorentz force ~ jx B,

MHD acceleration:




MHD jet simulations

Numerical proof of jet MHD acceleration & self-collimation
( Ouyed & Pudritz 1997; Ustyugova et al. 1996; a.m.m. ):

Model assumptions:

-> ideal MHD, axisymmetry, polytropic gas + turb. Alfvenic pressur
-> Keplerian disk = boundary condition: mass flux, inner disk radius
-> steady state initial condition: force-free field, hydrostatic corona
-> allows for long-term evolution, parameter runs of different B.C.

(-0"q) ysip bunejo.

colors: gas density, lines: poloidal magnetic field lines



MHD simulations:
Dipolar magnetosphere

Stellar magnetosphere (Fendt & Elstner, A&A 1999, 2000):

-> quenched stellar dipole anchored in star & Keplerian disk

-> mass injection from disk & star (B.C.), parameter: Q*, B, dM/dt
-> stable initial state: force-free magnetic field + hydrostatic corona
-> grid size: 20 x 20 inner disk radii =40 x 40 stellar radii

-> long-term evolution: ~2500 ( 20 ) inner ( outer ) disk orbital periods

colors: gas density lines: poloidal field lines / vector potential contours



MHD simulations:
Dipolar magnetosphere

Long-term evolution (Fendt & Elstner, A&A 1999, 2000):

-> differential rotation between star & disk
twists magnetic field
-> magnetic pressure-driven expanding bubble
-> |large-scale dipole breaks up, small-scale dipole
remains within disk gap

-> initial “axial jet” disappears on the long-term:

transition from initial magnetohydro-static
to new magnetohydro-dynamic equilibrium

-> quasi steady state reached
-> two-component outflow, v ~ 0.5 -2 v_Kep:
MHD driven disk wind & stellar wind
-> no collimation !!' (zero net electric current)

-> axial knots / “instabilities” for low stellar wind
mass flux

-> no “reconnection”, ideal MHD




MHD jet collimation:
Pure disk jets

Collimation & magnetic field profile

Mass flux profile / disk magnetic flux profile and jet self-collimation (Fendt ApJ 2006)

-> disk magnetic field profile: Bp ~p "
> disk wind magnetization: . B r' 2 o
4Mc

-> degree of collimation:

.. ? l'

M, 2 Jo ™ rpu.dr
Zmax

M.  27Fmex Jo 5 popdz.

-> grid size: (150x300) r; ~ (7x14) AU ~ observational resolution for stellar jets

mass flux in axial & lateral direction ( =

-> parameter runs: W, [B|, dM(r)/dt

5,=100, B,=B,=1, B,=0.03, v, (r)=10"v,(r), p,, =100 p =40,z, =160

cor?’



MHD jet collimation:
Disk magnetic flux profile

Collimation & magnetic field profile

_u I'lg- - —_ p
> "flat” profile (B, ) -> efficient collimation | B,~F ", Oq~F ", py~F
-> axial “instabilities” for too flat profile (no stationary state)
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MHD jet collimation:
Disk magnetic flux profile

Collimation & magnetic field profile
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-> “flat” profile (B, ) -> efficient collimation p

-> axial “instabilities” fo flat profile (no stationary state)
Magnetic flat B(r) profiles:
Flux disk winds,
Surfaces disk dynamo
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Lines

steep B(r) profiles:
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“X-winds”
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Outflows from disk-star magnetospheres

Two-component magnetic field configuration (Fendt ApJ 2009):

-> superposed stellar dipole + disk magnetosphere
-> mass flux from underlying Keplerian disk (r >1.0) + stellar wind (r <0.5)

Ag(r, dzsk(\/r Z+ZD —(z+2z))
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-> other parameter: plasma-, stellar/disk mass fluxes,
turbulent Alfvenic pressure, magnetic diffusivity
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Outflows from disk-star magnetospheres

Time evolution of disk-star magnetospheres: (example A, =-0.1, A, =3.0)

star

- rotating star: co-rotation radius = inner disk radius

- resistive MHD: model of turbulent Alfvenic diffusivity, reconnection ()

- run time ~ 3600 inner disk orbits (= 6 outer disk orbits )

- intermediate times: -> quasi stationary state, however transient, flares (~CME)
-> de-collimation of disk wind by central stellar wind

- long-term evolution: -> quasi stationary states -> cyclic behavior @ large scale ?
-> central dipole disturbs large-scale structure (Goodson 1999)
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Outflows from disk-star magnetospheres
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Outflows from disk-star magnetospheres

Flare evolution t=1400 - 2300: lateral velocity & momentum re-distribution
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Outflows from disk-star magnetospheres

Axial mass flux during flare: variation by factor 2-4

-> triggering jet internal shocks / knots (?7?)

Mass flux / time

9f

dM,/dt
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flux in axial direction




Formation of MHD jets: flares as triggers of internal shocks:

Summary

(1) Axisymmetric MHD simulations of jet formation:

-> disk/star B.C. allows for long-term evolution (t=3600),
parameter runs

Stellar Disk and Jet Motion - HH30
PRCA%-24b - ST Scl GRG - June B 1833 - C. Burrons (ST Scl)

-> iniitial hydrostatic state plus force-free magnetic field

-> “self-consistent” model of magnetic diffusivity ~ turbulent Alfvenic pressure

(2) Disk jet simulations with different disk magnetic flux & mass flux profiles
-> unique relation between disk wind magnetisation ¢ and degree of collimation C.

-> efficient collimation for flat disk magnetic field / disk wind magnetization profile
-> origin of field structure??
-> “X-wind” models are unlikely to launch collimated outflows
-> disk wind/ dynamo provides flat magnetic field profile (?)

(3) Simulations of superposed stellar & disk magnetosphere:
-> de-collimation of disk wind by stellar wind.
-> flares (CME) on t=1000 time scale, duration about t=10-20
-> re-configuration of jet transverse velocity & mass flux profile
-> variation of jet mass flux by factor 2- 4
-> may trigger jet internal shocks / knots (?7?)

(4) Outlook: relativistic MHD disk jets, radiative forces, disk structure evolution



Appendix



MHD jet collimation:
MHD simulations of magnetospheres

Critical review of disk-as-boundary simulations:

(+) -> powerful tool to investigate the long-term, large-scale

evolution of disk / star / star-disk magnetospheres
-> fast tool: only magnetospheric variables are treated:
-> (numerical) time steps in disk & outflow differ largely
-> strong gradients between disk & corona not need to
be resolved
-> disk / star boundary condition helps to control simulation
-> allows to investigate wide range of parameters & geometries
-> ok, as many quantities are not really known: field structure (star / disk),
mass loss, disk “physics” (radiative MHD, opacities, turbulence, dynamo)
-> interesting for 3D jet formation stability studies (e.g. Ouyed & Pudritz 2003)
-> option for comparison / fit to observations

(=) -> disk physics not included (provides the launching conditions for outflows):

-> non-steady mass flux into outflow
-> time scales set by disk physics
-> feedback from outflow to disk structure
-> ad hoc prescription for parameters like mass flow rate, field structure



