Radiative signatures of Fermi acceleration at relativistic shocks

Brian Reville & John G. Kirk

Max-Planck-Institut für Kernphysik, Heidelberg

Steady Jets and Transient Jets Max-Planck-Institut für Radioastronomie 7-8 April, 2010

Fermi acceleration at relativistic shocks

- PIC simulations now clearly showing self-consistent acceleration at relativistic shocks
- so far only for unmagnetised plasmas or subluminal shocks

$$\sigma = \frac{B^2}{4\pi\Gamma nmc^2} \ll 1$$

Spitkovsky 2008

Radiation spectra in turbulent fields

Consider a structure with strength parameter $a = eB\lambda/mc^2$

2 transport regimes

- $a \ll \gamma$: Ballistic
- $a \gg \gamma$: Helical

2 radiation regimes

- ► a > 1: Synchrotron
- ▶ a < 1: Jitter</p>

Summary

For e^{\pm} Weibel mediated shocks $a_{\rm crit} \approx 10^6 \bar{\gamma}^{1/6} \left(n/1 \, {\rm cm}^3 \right)^{-1/6}$

Kirk & Reville (2010)

Current PIC simulations suggest $a \sim \bar{\gamma}$, $\hbar \omega_{max} \approx 30 \sim 300 \text{eV}$ \Rightarrow no γ -rays

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ◆□ >

Radiative signatures of small scale turbulence

Power-law of electrons $dn/d\gamma \propto \gamma^{-p}$

Summary

 First order Fermi at relativistic shocks requires strong short wavelength turbulence

 synchrotron in the UV/optical waveband. γ-rays produced via inverse Compton scattering

 low/high frequency spectrum depends on structure of turbulence