The puzzling precession in LSI +61°303

L. Zimmermann und M. Massi Max-Planck-Institut für Radioastronomie, Bonn

LSI +61 °303

- High mass X-ray binary system
- Compact object: 2-3.5 Mo
- Companion: Be star (5-15 M☉)
- Orbital period: 26.5 d
- Highly eccentric orbit

Spectral index analysis and high energy observations confirm the two peak accretion microquasar model for LSI +61°303.

Short-term variability and strong morphologial changes in LSI +61°303

- Change in position angle of 60° per day observed by MERLIN in 2004
- Confirmed by consecutive VLBA images in 2006

- A precessing jet with a period of only a few days
- Induces variable Doppler boosting and variations in the position angle

- Most likely cause: the compact object is tilted
- Accretion disk is either:
 - coplanar with compact object and tilted with respect to the binary orbital plane
 - \rightarrow Be star induces a gravitational torque
 - coplanar with the binary orbital plane and tilted with respect to the compact object
 - \rightarrow Lense-Thirring precession, if compact object rotates

Tidal Forces

Tidally forced precession for assumed disk size

Precessional period above 460 days

Lense Thirring

Conclusions

Daily variations in the position angle observed by MERLIN in 2004 and confirmed by consecutive VLBA images in 2006:

- cannot be explained by tidal forces: produces too long a precessional period
- can be explained by Lense-Thirring: produces the observed precessional period

Thank you for your attention!

Lense Thirring

Massi & Zimmermann 2010

For a test particle: PLT results in a few days for 0.001< a*<0.01 Integrated over the disk: PLT becomes even shorter