Correlation between X-ray and gamma-ray emission in TeV blazars

Krzysztof Katarzyński

Toruń Centre for Astronomy, Nicolaus Copernicus University, Poland

> Steady Jets and Transient Jets, Bonn 7-8 April 2010

< ロ > < 同 > < 三 > < 三 >

Outline Observations

Outline

- observations, how we define the correlation
- why simple SSC model does not work
- two or more sources, more complex solution
- conclusions

イロン イヨン イヨン イヨン

Outline Observations

Mrk 421 – optical, X-ray & gamma-ray light curves

TeV – HEGRA & Whipple, X-ray – RXTE-PCA, Fossati et. al. 2008

< 注→ 注

Outline Observations

Mrk 421 – 18/19 March 2001

Fossati et al. 2008

Outline Observations

Definition of the correlation

Outline Observations

Mrk 421 - March 18/19, spectra

Krzysztof Katarzyński TCfA Poland Correlation X/gamma, page 6/34

Outline Observations

Mrk 421 - March 18/19, spectra

Krzysztof Katarzyński TCfA Poland Correlation X/gamma, page 7/34

Outline Observations

Mrk 421 – 22/23 March 2001

Fossati et al. 2008

Outline Observations

PKS 2155-304 - 29/30 July 2006

Aharonian et al. 2009 (H.E.S.S. Collaboration)

Outline Observations

Mrk 501 - April 1997

Catanese et al. 1997, Pian et al. 1998, Djannati-Atai et al. 1999

Krzysztof Katarzyński TCfA Poland Correlation X/gamma, page 10/34

Outline Observations

Mrk 501 - correlation for April 1997

Outline Observations

Mrk 421 - February 2000

Krawczynski et al. 2001

Э.

Outline Observations

Mrk 421 - correlation for February 2000

Basic assumptions Evolution in time Estimated results

Internal shock scenario

Basic assumptions Evolution in time Estimated results

Mrk 501 – emission model

Homogeneous source - basic assumptions

- spherical homogeneous source (R [cm])
- uniform electron density (K [cm⁻³])
- uniform magnetic field intensity (B [G])
- power law electron energy distribution:

$$N(\gamma) = K \gamma^{-n}$$
 for $\gamma_{\min} \leq \gamma \leq \gamma_{\max}$,

or double (broken) power law distribution:

$$\mathcal{N}(\gamma) = \left\{ egin{array}{cc} \mathcal{K}_1 \gamma^{-n_1}, & \gamma_{\min} \leq \gamma \leq \gamma_{\mathrm{brk}} \ \mathcal{K}_2 \gamma^{-n_2}, & \gamma_{\mathrm{brk}} < \gamma \leq \gamma_{\max} \end{array}
ight.$$

where
$$E = \gamma m_e c^2$$
 and $K_2 = K_1 \gamma_{\mathrm{brk}}^{n_2 - n_1}$

Basic assumptions Evolution in time Estimated results

Double power law spectrum

Krzysztof Katarzyński TCfA Poland

Correlation X/gamma, page 17/34

Basic assumptions Evolution in time Estimated results

Time dependent SSC - basic assumptions

The evolution of the source radius

$$R(t)=R_0\left(rac{t_0}{t}
ight)^{-r_{
m e}},$$

where R_0 is the initial radius.

The evolution of the magnetic field intensity inside the source

$$B(t)=B_0\left(\frac{t_0}{t}\right)^m,$$

where B_0 is the initial magnetic field intensity.

Basic assumptions Evolution in time Estimated results

Evolution of electron spectrum

$$N_{
m e}(\gamma,t)=\min\left\{N_{
m e}^1(\gamma,t),N_{
m e}^2(\gamma,t)
ight\}, ext{where}$$

$$\mathcal{N}^1_{\mathrm{e}}(\gamma,t) = \mathcal{K}^1_{\mathrm{e}}(t)\gamma^{-n_1}, \qquad \mathcal{N}^2_{\mathrm{e}}(\gamma,t) = \mathcal{K}^2_{\mathrm{e}}(t)\gamma^{-n_2}$$

 $r_{\rm a}$ describes the adiabatic losses and $r_{\rm d}$ describes the decrease of the electron density.

イロン イヨン イヨン イヨン

Evolution of synchrotron emission

Evolution of the synchrotron flux is described by

 $F_{\rm s}(t) \propto R(t)^3 K_{\rm e}(t) B(t)^{m(\alpha+1)},$

which below the peak gives

$$\begin{array}{rcl} F_{\rm s}^1(t) & \propto & R_0^3 K_1 B_1 \left(\frac{t}{t_0}\right)^{s_1}, \\ s_1 & = & 3r_{\rm e} - 3r_{\rm d} - r_{\rm a}(n_1 - 1) - m(\alpha_1 + 1), \end{array}$$

and above the peak

$$\begin{array}{lll} F_{\rm s}^2(t) & \propto & R_0^3 K_2 B_2 \left(\frac{t}{t_0}\right)^{s_2}, \\ s_2 & = & 3r_{\rm e} - 3r_{\rm d} - r_{\rm a}(n_2 - 1) - m(\alpha_2 + 1). \end{array}$$

イロン イヨン イヨン イヨン

Evolution of inverse-Compton emission

Evolution of the inverse-Compton flux below the peak, in the Thompson limit is given by

$$\begin{aligned} F_{\rm c}^1(t) &\propto R_0^4 K_1^2 B_1\left(\frac{t}{t_0}\right)^{c_1}, \\ c_1 &= 4r_{\rm e} - 6r_{\rm d} - 2r_{\rm a}(n_1 - 1) - m(\alpha_1 + 1), \end{aligned}$$

whereas above the peak, in the Klein-Nishina regime we have

$$\begin{aligned} F_{\rm c}^2(t) &\propto R_0^4 K_1 K_2 B_1 \left(\frac{t}{t_0}\right)^{c_2}, \\ c_2 &= 4r_e - 6r_d - r_a(n_1 - 1) - r_a(n_2 - 1) \\ &- m(\alpha_1 + 1). \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

Basic assumptions Evolution in time Estimated results

Four basic correlations

we have four basic evolutions:

• $F_{\rm s}^1 \propto t^{s_1}$ for the synch. rad. before the $\nu F_{\rm s}(\nu)$ peak • $F_{\rm s}^2 \propto t^{s_2}$ for the synch. rad. above the $\nu F_{\rm s}(\nu)$ peak • $F_{\rm c}^1 \propto t^{c_1}$ for the IC emission before the $\nu F_{\rm c}(\nu)$ peak • $F_{\rm c}^2 \propto t^{c_2}$ for the IC emission above the $\nu F_{\rm c}(\nu)$ peak which give four basic correlations:

$$\begin{split} F_{\rm c}^1 &\propto (F_{\rm s}^1)^{{\rm c}_1/{\rm s}_1} & F_{\rm c}^2 &\propto (F_{\rm s}^1)^{{\rm c}_2/{\rm s}_1} \\ F_{\rm c}^1 &\propto (F_{\rm s}^2)^{{\rm c}_1/{\rm s}_2} & F_{\rm c}^2 &\propto (F_{\rm s}^2)^{{\rm c}_2/{\rm s}_2} \end{split}$$

イロン 不同 とうほう 不同 とう

Basic assumptions Evolution in time Estimated results

Four basic correlations

э

Basic assumptions Evolution in time Estimated results

Basic estimations

	r _e	r _d	ra	т	c_1/s_1	c_1/s_2	c_2/s_1	c_2/s_2
а	1	0	0	0	1.333	1.333	1.333	1.333
Ь	0	1	0	0	2	2	2	2
с	1	1	0	0	inf	inf	inf	inf
d	1	1	1	0	4	1	7	1.75
е	1	1	1	1	2.2	0.786	3.4	1.214
f	0	0	0	1	1	0.5	1	0.5
g	0	1	1	0	2	1.143	2.75	1.571
h	0	1	1	1	1.727	0.950	2.273	1.250
i	1	1	0	1	2.332	1.167	2.333	1.167
j	1	0	0	1	1.667	inf	1.667	inf
k	0	1	0	1	1.667	1.250	1.667	1.250
1	1	1	1	2	1.75	0.7	2.5	1

・ロト ・四ト ・ヨト ・ヨト

э

Basic assumptions Evolution in time Estimated results

Correlations around the peaks

Basic assumptions Evolution in time Estimated results

Impact of the radiative cooling

Krzysztof Katarzyński TCfA Poland Corre

Correlation X/gamma, page 26/34

Basic assumptions Evolution in time Estimated results

Simple SSC model cannot explain observed correlations

- An injection of the relativistic particles into the source that increases the density could in principle explain the quadratic correlation during rising phase of a flare. However, this requires R = const., B = const. and negligible radiative cooling during the injection.
- By analogy to the injection, systematic energy independent escape of the particles that decreases the density could in principle explain the quadratic correlation during decay phase of a flare. However, the particles outside the source can still produce efficiently gamma rays through the inverse-Compton scattering. In other words the gamma-ray emission will not decay fast enough to produce the quadratic correlation during the decay phase.
- What about observed more than quadratic correlations?

Two sources Injection and cooling Doppler effect

Emission of two sources at the same time

<ロ> <四> <四> <四> <三</td>

Two sources Injection and cooling Doppler effect

Mrk 421 – variability of two sources

Katarzyński & Walczewska 2010

Two sources Injection and cooling Doppler effect

Doppler boosting effect

Two sources Injection and cooling Doppler effect

Mrk 421 – variability due to the change of φ

Katarzyński & Walczewska 2010

Two sources Injection and cooling Doppler effect

PKS 2155-304 - very rapid variability

Krzysztof Katarzyński TCfA Poland Correlation X/gamma, page 32/34

Conclusions

The proposed approach has several advantages:

- it can explain any slope of the correlation,
- in the extreme case it is possible to explain the orphan flares,
- the approach does not involve a new model of the emission, it uses the standard SSC scenario to explain a single source radiation,
- it may explain why the correlation was well determined only in a few cases so far,
- in was already shown that using this approach it is possible to explain also the rapid variability.

Two sources Injection and cooling Doppler effect

References

- Aharonian, F.; Akhperjanian, A. G.; Anton, G., et al. 2009, A&A, 502, 749
- Catanese, M., Bradbury, S., M., Breslin, A., C., et al. 1997, ApJ , 487, L143
- Djannati–Atai, A., Piron, F., Barrau, A., et al., 1999, A&A, 350, 17
- Fossati, G., Buckley, J., H., Bond, I. H., et al. 2008, ApJ, 677, 906
- Katarzyński, K., Ghisellini, G., Tavecchio, F., et al. 2005, A&A, 433, 479
- Katarzyński, K., Lenain, J.-P., Zech, A., et al. 2008, MNRAS, 390, 371
- Katarzyński, K., & Walczewska, K., 2010, A&A, 510, 63
- Krawczynski, H., Sambruna, R., Kohnle, A., et al., 2001, ApJ, 559, 187
- Pian, E., Vacanti, G., Tagliaferri, G., et al., 1998, ApJ, 492, L17

イロン 不同 とくほど 不同 とう

臣