Self-Regulation of Solar Coronal Heating via the Collisionless Reconnection Condition

Dmitri A. Uzdensky

Princeton University

Bonn, December 12, 2006

Plasma Collisionality is a Switch between Slow and Fast Reconnection modes:

• Collisional Regime:

 $\begin{array}{ll} \mbox{resistive-MHD with classical resistivity } \Rightarrow \\ \mbox{Petschek reconnection mechanism doesn't work } \Rightarrow \\ \mbox{Slow Sweet-Parker reconnection} \end{array}$

• Collisionless regime:

- Hall Reconnection
- Anomalous resistivity

both lead to $\ensuremath{\mathbf{Fast}}$ Petschek-like Reconnection

COLLISIONLESS RECONNECTION CONDITION

Criterion for Fast Collisionless Reconnection:

$$\begin{split} \delta_{\mathrm{SP}} &< \delta_{\mathrm{collisionless}} \simeq d_i \equiv \frac{c}{\omega_{pi}} \,. \\ & \Downarrow \\ \lambda_{e,\mathrm{mfp}} &> L \sqrt{m_e/m_i} \simeq L/40 \,. \\ & \Downarrow \end{split}$$

 $n < n_c(L,B) \sim 2 \cdot 10^{10} \, {\rm cm}^{-3} \, B_{1.5}^{4/3} \, L_9^{-1/3}$

D. Uzdensky

Coronal Heating is a Self-Regulating Process keeping plasma marginally collisionless!

- Density controls reconnection:
 - $-\underline{n > n_c}$: no reconnection \Rightarrow no heating: plasma gradually cools, n_{corona} drops.
 - $-\underline{n_e < n_c}$: rapid collisionless reconnection, energy is released.
- Reconnection controls density: coronal energy release ⇒ chromospheric evaporation ⇒ coronal density rises.
- Closing the Loop: $n > n_c$ in post-flare loops \Rightarrow subsequent magnetic dissipation is suppressed.

Thus, although highly intermittent and inhomogeneous, corona is working to keep itself roughly at the critical density $n_c(L, B_0)$.

$\Rightarrow\,$ SELF-REGULATION OF CORONAL HEAT-ING

D. Uzdensky