HEATING OF THE SOLAR CORONA

ACTIVE REGION

ACTIVE REGION

HEATING MODELS

• AC

- ALFVÈN WAVES
- DOPPLER SIGNAL, FREQUENCY

• DC

- LARGE AMOUNT OF RECONNECTION EVENTS
- UNKNOWN OBSERVATIONAL EFFECT

TANGLING

ATTACKING THE PROBLEM

• FULL ATMOSPHERE (ASCHWANDEN '01)

- TIME DEPENDENT (KUPERUS '81)
- CORRECT DRIVING
- MINIMAL ASSUMPTIONS

COMPLICATIONS

• SCALE COMPLICATIONS

- LENGTH SCALES
- TIME SCALES
- THERMAL CONDUCTION
- NON-SPECIFIC

3D MHD

- FULL ATMOSPHERE
 'STANDARD' ACTIVE REGION
 Typical magnetic field
 Optically thin radiative cooling
 Spitzer conductivity
 - GENERAL PHOTOSPHERIC DRIVER

DRIVER

T=0.983333 min

FULL CORONA

180 Mm (3 Box Lengths)

37 Mm

60 Mm

HEATING BY CURRENTS

MODEL DIAGNOSTICS

HEATING RATE IS SUFFICIENT
TRACE DN COUNTS REPRODUCED
LOOPS ARE READILY PRODUCED

FORWARD MODELING

DEM

CONCLUSIONS

- THE MODEL SEEMS TO REPRODUCE THE SUN
 - DEM CURVE REPRODUCED
 - HEATING RATE REPRODUCED
 - TRACE DN-NUMBERS REPRODUCED
 - LOOPS ARE READILY PRODUCED

BUT....

- OPTICALLY THICK ATMOSPHERE
 TRANSITION REGION
- EMERGING FLUX
- QUIET SUN
- REAL ACTIVE REGION
- OTHER STARS