Radio and X-Ray Emission from Stellar Coronae

Manuel Güdel (Paul Scherrer Institut) ETH Zürich Switzerland

Bonn, 12 November 2006

terning should be

ASSIMILAS INSSI

Outline:

Motto: Scepticism is useful

- Coronal structure
- Flares: Bringing mass into the corona
- How are stellar coronae energized?
- Exotic coronae? "Dark coronae"?

Conclusions: Where are the gaps in our understanding?

How are Coronae Structured?

Major question: Do solar concepts apply? Are stellar coronae "compact" or "extended"?

Coronal Structure

X-RAYS: Principle: Rotational modulation

(Güdel et al. 1995)

(Marino et al. 2003)

solar-like active regions, densities < few times 10^{10} cm⁻³

(Güdel et al. 2004)

AR Lac in X-rays: 3-D modeling using Withbroe method (Siarkowski et al. 1993)

intrabinary magnetic fields?

YY Gem in X-rays: 3-D modeling using Withbroe method (Güdel et al. 2001)

no intrabinary emission required

Scale height ($\approx 10^{10}$ cm) kT/(μ m_Hg) \rightarrow T \approx 6-7 MK

spectroscopically measured: 3-10 MK

Coronal structure from line shifts and broadening

Algol (K2 IV + B8 V): (Chung et al. 2004)

<u>excess line broadening</u>: Rotational broadening, implying X-ray coronal scale height $\approx R^*$ \approx thermal scale height

Similar for single stars:

Hussain et al. (2005) for AB Dor:

Coronal X-ray/FUV emission within $\approx 0.5 R_*$ (scale height for 10 MK)

Determining coronal structure with radio waves

6 F Basal-N source 1 5 Mare-N Observer source 2 Tare Basal-S oution and e odius source 1 b 22 23 24 25 26 time in UT of February 4, 1996 (Mutel et al. 1998)

UV Cet, a nearby M dwarf

Brightness temp. 10⁸-10⁹ K

not thermal ! **Gyrosynchrotron**

Emissivity $\eta(B, N, \delta), \quad \delta \approx 2.5$ $\rightarrow B = B(N)$

- magnetic confinement
- $v = 2.8 \times 10^6 \text{ By}^2$ [Hz]
- $\gamma B^2 = 6.7 \times 10^8 / t_{syn}$

 $B = 15-113 \text{ G}, n_e < 2x10^8 \text{ cm}^{-3}$

(Benz, Conway, Güdel 1998)

V773 Tau millimeter observations Periodic radio flares (Massi et al.):

- Size scale from VLBI: > 15 R*
- Pitch angle scattering in helmet streamers?
- combine with VLBI info and periodic flaring (at periastron):
- Helmet streamers interacting with companion star?

 $\gamma = 20 - 632$, B < 1 G at apex \rightarrow large-scale!

More magnetic interaction \rightarrow flaring: hot, dense (\rightarrow high-luminosity) component

(Güdel et al. 1997, Drake et al. 2000 Ness et al. 2004, Testa et al. 2004)

Coronal Flares

Are giant stellar flares analogs to solar flares?

Standard flare scenario after reconnection

Bonn.

approximation for radiative loss time >> energy release time

"Neupert Effect"

(the proportionality between thermal energy content and radiative loss is a crude approximation)

detection

First detection of non-therma hard X-ray emission in stella flares (by SWIFT):

(to be expected judged from non-thermal radio emission)

- Counter-examples:
- EV Lac (Osten et al. 2005)
- no heating of / evaporation to corona?
- perfect trapping of electrons in corona (BUT: U band?)
- coronal flare of very low density?
- shadowing of some source
- very-high energy particles penetrate deep into photosphere: no evaporation?

T195_020421_XflareAR9906.mov

Hard X-ray footpoint motion: evolution of an arcade

(moveitloop.mpg coutesy of Paolo Grigis, ETHZ)

Continuous Flaring (?)

xrt_pfi_20061113red.mpg

Solar guidance:

Smallest stellar flares seen in X-rays: Proxima Centauri

FLARE ENERY DISTRIBUTIONS

logE

In that case, all of the observed (quasi-steady) emission "may be" due to the superposition of small flares

Statistical tests of light curves show that $dN/dE \propto E^{-\alpha}$ implies $\alpha > 2$

(Audard et al. 1999, 2000, Güdel et al. 2003, Kashyap et al. 2002, Arzner & Güdel 2004)

$dN/dE \propto E^{-\alpha}$

Collura et al. 1988 Pallavicini et al. 1990 Osten et al. 2000 Audard et al. 1999, 2000 Kashyap et al. 2002 Güdel et al. 2003 Arzner & Güdel 2004 Wolk et al. 2005 Stelzer et al. 2007

 $\alpha \approx 1.52 + -0.08$ M dwarfs $\alpha \approx 1.7 + -0.1$ M dwarfs $\alpha \approx 1.6$ RS CVn $\alpha \approx 2.2 + - 0.2$ G,K,M dwarfs M dwarfs *α* ≈ **2.0-2.7** $\alpha \approx 2.0-2.5$ AD Leo AD Leo $\alpha \approx 2.3 + - 0.1$ TTS (Orion) $\alpha \approx 1.7$ $\alpha \approx$ **2.4** +/- 0.5, 1.9 +/- 0.2 TTS (Orion, TMC)

Should stellar coronal models really be (stochastic-) flare models?

"Anomalous" Coronal Heating?

O VII/O VIII Ly α low in CTTS high in WTTS

"SOFT EXCESS"

(1-3 MK; Telleschi et al. 2007, Güdel et al. 2007)

accretion-related?

Brown Dwarfs: A Low-Mass "Coronal" Puzzle

Young brown dwarfs:

"low-mass T Tau objects on Hayashi track"

Old brown dwarfs:

T_{eff} down to < 1000 K convection ceases **no** nuclear energy source

Expect:

Drop in magnetic activity Inefficient heating and particle acceleration

A few initial surprises (cont'd):

Radio emission from field brown dwarfs

strong, "steady" and flaring emission as in M dwarfs

fs (Berger 2001/03/06, Berger et al. 2005, Burgasser & Putman 2005)

gyrosynchrotron emission in $B \approx 100 \text{ G}$

(Berger 2002)

Putting BDs into context:

"X-Ray Dark Active Magnetic Coronae?

(Berger 2006)

Conclusions?

- * X-ray coronae as the end product of a chain of energy release and transformation processes. We tend to see dense plasma within a scale height.
- * There is clear evidence for much larger-scale magnetic fields from radio studies. Particle acceleration is a common and important phenomenon in active stars.

Many open problems to be addressed in detail, using the Sun as a guide:

- How are magnetic fields structured globally? and in flares?
- Are flares the ultimate energy source for active stellar coronae?
- Are there magnetically active X-ray dark coronae? (BDs, TTS)
- Are stellar coronae modified by accretion processes and disks?

→Build in complexity!

Bonn. 12 November 2006

Reality Sale (B)

an illision af hou

END