Coronae of Stars and Accretion Disks 12 Dec 2006, Bonn, Germany

Magnetic flux emergence in fast rotating stars

Volkmar Holzwarth

Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany

Outline

- 1. Introduction
- 2. The Solar Paradigm
- 3. Effects of stellar rotation
- 4. 'Polar Spots'
- 5. Pre-MS and binary stars
- 6. Summary

2 🐠

From the Sun to *cool* stars

- increasing quality and quantity of observations of stellar magnetic activity
- concept: convective motions & rotation \rightarrow dynamo \rightarrow magn. flux emergence
- How does amount of emerging magn. flux depend on stellar rotation?

 $\Phi \propto \Omega^n$ with $n \sim 1-3$

(Saar 2001; Schrijver et al. 2003)

- back-reaction of magn. field on flow \rightarrow saturation of dynamo operation
- theory: no consistently closed dynamo model yet (e.g., Ossendrijver 2003)

• How does surface distribution of emerging flux depend on stellar rotation?

He 699 (G2V, **0.49d**)⁵ HK Aqr (M1Ve, **0.41d**)⁵ BO Mic (K3V, **0.38d**)⁵ AE Phe (G1V, **0.36d**)⁵

¹SoHO/NASA; ²Kovári et al. (2004); ³Oláh et al. (2002); ⁴Donati & Collier Cameron (1997); ⁵Barnes et al. (2001a,b, 2004a,b)

- high-latitude spots on rapidly rotating stars (e.g. Strassmeier 2002)
- spot coverage up to 40% (O'Neal et al. 2004) ; Sun: < 0.5%

4 🦇

The Solar Paradigm

- strong magnetic fields (flux tubes) originate from bottom of convection zone (e.g. van Ballegooijen 1982; Moreno-Insertis 1986)
- basic model:
 - field amplification in tachocline
 - storage at interface to radiative core
 - beyond critical field strength onset of instability
 - flux loops rising through convection zone
 - emergence at stellar surface
 - disconnection from sub-surface roots
 - dispersal and transport with large-scale flow

• predictions in agreement with emergence latitudes, tilt angles, proper motions of sunspot groups (e.g. D'Silva & Choudhuri 1993; Fan et al. 1994; Caligari et al. 1995)

Equilibrium properties

- toroidal flux tube in mechanical equilibrium, parallel to equatorial plane (e.g. Spruit & van Ballegooijen 1982; Moreno-Insertis et al. 1992)
 - non-buoyant ($\rho_i = \rho_e$)
 - prograde internal flow with velocity excess

$$\Delta v = v_{\rm i} - v_{\rm e} = \sqrt{v_{\rm e}^2 + v_{\rm A}^2} - v_{\rm e}$$

- v_e : flow velocity of environment (= $\Omega r \cos \lambda$) v_A : Alfvén velocity
- curvature force balanced by Coriolis force

- faster stellar rotation \rightarrow lower Δv , but larger angular momentum of int. plasma
- basic scheme:

if internal flow velocity
$$\left\{ \begin{array}{c} larger \\ smaller \end{array} \right\} \rightarrow net \left\{ \begin{array}{c} outward \\ inward \end{array} \right\}$$
 force

5 **MPS**

Stability properties

- beyond critical magnetic field strength onset of buoyancy driven instability (e.g. Spruit & van Ballegooijen 1982; Ferriz-Mas & Schüssler 1995)
- high angular momentum **stabilises** flux tubes

- flux emergence on 'solar-like' time scales requires higher field strengths
- \rightarrow fast rotators: stronger magn. buoyancy & Coriolis forces

Eruption properties

• if AM conserved, v_i decreases \rightarrow curvature force outbalances Coriolis force

• rising flux loop expands in longitude \rightarrow 'cyclonic effect'

• effects depend on ratio between magn. buoyancy and Coriolis force

High-latitude spots through flux tube eruption

- the faster the rotation, the stronger the poleward deflection
 - → formation of **polar spots** on rapid rotators (Schüssler & Solanki 1992; Buzasi 1997)
- axisymmetric flux tubes

 \rightarrow maximal deflection: rise parallel to rotation axis

 \rightarrow poleward deflection decreases with latitude

high-latitude flux eruption on fast rotating solar-like stars

High-latitude spots supported by meridional flows

- combination of pre-eruptive & post-eruptive flux transport to high latitudes
- observation: mixture of polarities at high latitudes (e.g. Donati & Collier Cameron 1997)
 - 30× solar flux emergence → unipolar polar spot (Schrijver & Title 2001)
 - 30× flux emergence, larger latitudinal range, strong meridional flows → mixture of polarities (Mackay et al. 2004)
- strong meridional circulation enhances pre-eruptive poleward deflection (Holzwarth et al. 2006)

Images courtesy D. Mackay

10 🐠

Dependence on stellar structure

pre-MS stars in spin-up phase, hardly braked by magnetised winds
→ rapid rotators

- young stars:
 - larger stellar radii & deeper convection zones imply longer rise times
 - lower superadiabaticity/larger pressure scale heights in CZ imply weaker magn. buoyancy
- Coriolis force dominates over magn. buoyancy
 - \rightarrow large poleward deflection

Latitudinal probability distributions (Granzer 2000; Granzer et al. 2000)

• pre-MS stars (age 27 - 7 Myr for 0.4 - 1.7 M_{\odot})

• increase of eruption latitudes for younger stars and for decreasing stellar mass

• TTauri stars (age 11 - 5 Myr for 0.6 - 1.7 M_{\odot})

• 'Hayashi' stars (age 25 - 0.6 Myr for 0.4 - 1.7 M_{\odot})

• for stars with very small radiative cores: detached flux tubes emerge at low latitudes ($\Omega \lesssim 10\Omega_{\odot}$) or pole ($\Omega \gtrsim 10\Omega_{\odot}$)

Close binary stars

- non-uniform longitudinal distribution through tidal effects (e.g. Holzwarth 2004)
- 1 M_{\odot}-stars, $P_{sys} = 2 d$: **MS** (4.7 Gyr, 1 R_{\odot}, left); **post-MS** (11.8 Gyr, 2.3 R_{\odot})

• flux emergence pattern depends on evolutionary stage and field strength

Summary

- solar flux emergence model applicable to cool stars
- equilibrium, stability, and eruption properties depend on stellar rotation rate and stellar structure
- poleward deflection and tilt angle depend on ratio between Coriolis force and buoyancy
- mean latitude of flux emergence increases with
 - increasing stellar rotation rate
 - decreasing stellar mass
 - decreasing stellar age
 - decreasing size of radiative core
- fast rotation: polar spots on young stars, high-latitude spots on (ZA)MS stars, likely supported by meridional circulation
- flux emergence at intermediate and low latitudes still possible

Eruption of magnetic flux tubes

- solar-like MS star: $M = 1 \text{ M}_{\odot}$; $R = 1 \text{ R}_{\odot}$; $r_{\text{cz} \to \text{rc}} \simeq .72$; $\Omega = 2.8 \cdot 10^{-6} (P = 26 \text{ d})$
- initial flux tube in mechanical equilibrium in mid overshoot region: $r_0 = 5.07 \cdot 10^{10} \text{ cm}; \lambda_0 = 5^{\circ}; B_0 = 10^5 \text{ G}; R_{\text{tube}} = 1000 \text{ km}$
- tube radius x5 for better visibility

Eruption of magnetic flux tubes

First Prev Next Last Go Back Full Screen Close Quit

Asymmetry of emerging flux tube

Eruption of magnetic flux tubes (II)

Appendix

Flux emergence on close binary stars

First Prev Next Last Go Back Full Screen Close Quit

References

Barnes, J. R., Collier Cameron, A., James, D. J., & Donati, J.-F. 2001a, Mon. Not. Royal Astron. Soc., 324, 231 Barnes, J. R., Collier Cameron, A., James, D. J., & Steeghs, D. 2001b, Mon. Not. Royal Astron. Soc., 326, 1057 Barnes, J. R., James, D. J., & Cameron, A. C. 2004a, Mon. Not. Royal Astron. Soc., 352, 589 Barnes, J. R., Lister, T. A., Hilditch, R. W., & Collier Cameron, A. 2004b, Mon. Not. Royal Astron. Soc., 348, 1321 Buzasi, D. L. 1997, ApJ, 484, 855 Caligari, P., Moreno-Insertis, F., & Schüssler, M. 1995, ApJ, 441, 886 Choudhuri, A. R. & Gilman, P. A. 1987, ApJ, 316, 788 Donati, J.-F. & Collier Cameron, A. 1997, Mon. Not. Royal Astron. Soc., 291, 1 D'Silva, S. & Choudhuri, A. R. 1993, A&A, 272, 621 Fan, Y., Fisher, G. H., & McClymont, A. N. 1994, ApJ, 436, 907 Ferriz-Mas, A. & Schüssler, M. 1995, Geophys. Astrophys. Fluid Dyn., 81, 233 Granzer, T. 2000, PhD thesis, Universität Wien Granzer, T., Schüssler, M., Caligari, P., & Strassmeier, K. G. 2000, A&A, 355, 1087 Holzwarth, V. 2004, Astronomische Nachrichten, 325, 408 Holzwarth, V., Mackay, D. H., & Jardine, M. 2006, Mon. Not. Royal Astron. Soc., 369, 1703 Kovári, Z., Strassmeier, K. G., Granzer, T., et al. 2004, A&A, 417, 1047 Mackay, D. H., Jardine, M., Cameron, A. C., Donati, J.-F., & Hussain, G. A. J. 2004, Mon. Not. Royal Astron. Soc., 354, 737 Moreno-Insertis, F. 1986, A&A, 166, 291 Moreno-Insertis, F., Schüssler, M., & Ferriz-Mas, A. 1992, A&A, 264, 686 Oláh, K., Strassmeier, K. G., & Weber, M. 2002, A&A, 389, 202 O'Neal, D., Neff, J. E., Saar, S. H., & Cuntz, M. 2004, Astron. J., 128, 1802 Ossendrijver, M. 2003, A&AR, 11, 287 Saar, S. H. 2001, in ASP Conf. Ser. 223: 11th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, ed. R. J. Garcia Lopez, R. Rebolo, & M. R. Zapaterio Osorio, 292-299 Schrijver, C. J., DeRosa, M. L., & Title, A. M. 2003, ApJ, 590, 493 Schrijver, C. J. & Title, A. M. 2001, ApJ, 551, 1099 Schüssler, M., Caligari, P., Ferriz-Mas, A., Solanki, S. K., & Stix, M. 1996, A&A, 314, 503 Schüssler, M. & Solanki, S. K. 1992, A&A, 264, L13 Spruit, H. C. & van Ballegooijen, A. A. 1982, A&A, 106, 58 Strassmeier, K. G. 2002, Astron. Nachr., 323, 309 van Ballegooijen, A. A. 1982, A&A, 113, 99