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Coronal
Loops

| High resolution

~ 1mage of the corona

W obtained by

 # TRACE satellite.




Corona and coronal Holes

X-ray images of
the sun reveal
coronal holes.

These arise at
the foot points of
open field lines
and are the
origin of the
solar wind.




The Solar Wind

Constant flow of particles from the sun.
Velocity = 300 — 800 km/s
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Solar cycle
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Magnetic Field and X-Ray Variation
Through one Solar Cycle

The activities in the solar corona also
follow the solar cycle.

In fact, the level of almost every
aspect of solar activities (flares,
coronal mass ejections, etc.)
follows the solar cycle.

The black-and-white patterns show the
surface magnetic field variation through one
sunspot cycle (11 years).




The solar dynamo is responsible
for the 1 1-¥ear solar cycle (also
called the 22-year solar cycle, the
sunspot cycle, magnetic cycle)

* The sunspot cycle itself

. . varies
Sunspot Number in recent centuries « All of the types of energy

input to Earth exhibit greater
Maund fluctuations on shorter
aunder timescales (flares, CMESs)

Minimum
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Solar Cycle---Sunspot Numbers and
the Butterfly Diagram
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Classical Signature of Solar Cycle

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS
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Properties of Solar Cycle

Courtesy: D.H. Hathaway
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* Equatorward migration of sunspot-belt

* Poleward drift of large-scale radial fields, from follower spots
* Polar field reversal at sunspot maximum



Solar Atmosphere

Photosphere

Chromosphere




Photospheric Features:

Granulation
. L F .r 1-'-
® Size of ,,# E- < :'

granulation _‘,_-

cell ~
1000km

® manifestation
of convection

(bubbling up and down...)




Differential Rotation of the Sun

The Sun does not rotate like a solid body. It rotates every 25 days

(1/462 nHz) at the equator and takes progressively longer to rotate one
revolution at higher latitudes, up to 35 days (1/330 nHz) at the poles.
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Schematic summary of predictive flux-transport dynamo model

Shearing of poloidal fields by
differential rotation to produce
new toroidal fields, followed by

eruption of sunspots.

Because, leading sunspots are
slightly equatorward of their
following ones, there is more
cancellation of leading-polarity fux
than following-polarity flux by
diffusion across the equator.

This leaves a surplus of
following-polarity flux in each
hemisphere, north and south.
Over the course of the cycle, in
each hemisphere meridional flow
sweeps the remnant flux toward
the pole and builds up a polar cup
of predominantly following-
polarity flux ( Moore 1990).



Induction Equation
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Induction equation

Faraday‘s law in combination with the simple phenomenological
Ohm's law, relating the electric field in the plasma frame with its

current;

J=oo(E+ v xB)

Using Ampere‘s law for slow time variations, without the
displacement current and the fact that the field is free of

divergence (0 -B=0),

yields the induction equation (with conductivity o,):

oB

1

— =V B) -
o x (vxB)4

H0O0

V2B




jon equation

Evolution of a magnetic field in a plasma, with
conductivity 0 moving at velocity v

a—B=V><(v><B):

Ot

* The first term of the right hand side describes
the behaviour (coupling) of the magnetic field
with the plasma
The second term on the right hand side
represents diffusion of the magnetic field
through the plasma.




Schrijver and Zwan
Solar and Stellar Magnetic Activity
Cambridge, Univ. Press 2000

If the scale length of the plasma is L, the gradient term
is (approximately)

V~1/L

J3
— =V x({vx B+ nVviB

o (%) ~ o () ~o (%)

locel change By advection and diffusion

(4.7}



oB/ot= ¥2B/ (oy,) + curl (vxB)
Rate of change of field in a flare volume =

diffusive term + convective term.

Get an order-of-magnitude estimate of quantities by
approximating oot=1/t, curl=1/L, ¥2=1/L%

If there 1s no convective term, then: B/t,=B/(L? o 1)

or diffusion time, T, =L*op,. (4)



Solar Flare

* A solar flare 1s a sudden brightening of solar atmosphere
(photosphere, chromosphere and corona)

* Flares release 10°7 - 10°2 ergs energy 1n tens of minutes.
(Note: one H-bomb: 10 million TNT = 5.0 X 10? ergs)

* A flare produces enhanced emission in all wavelengths across
the EM spectrum, including radio, optical, UV, soft X-rays, hard
X-rays, and y-rays

* Flare emissions are caused by
- hot plasma emitting in: radio, visible, UV, soft X-ray

-non-thermal energetic particles emitting in: radio, hard X-
ray, y-rays




Energy Source

E, =3nkTV =102 erg for pre-flare T =10°K
E o = (B120)V = 10%2erg

Only magnetic energy (E__.) is of the right order for

mag

the energy released in a large flare.



9.1 Solar flares
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Flare radiation and emission
mechanisms

Radio — microwave to metre wavelengths, produced by
gyrosynchrotron, bremsstrahlung and collective plasma

processes.

Optical emission — lines and continua, Ha line is seen in
emission (due to collisional excitation in hot, flare-produced
plasma).

White-light continua are probably produced by hydrogen
recombination following electron bombardment and H-

emission.

UV lines and continua — excitation by hot flare-produced
plasma, with an “impulsive contribution” due to nonthermal

electrons.



Flare radiation and emission mechanisms
(contd.)

‘EUV line emission.

*Soft X-ray — lines and continua (thermal e- - p*
bremsstrahlung, bound-free continuum).

‘Hard X-rays— non-thermal e- - p* bremsstrahlung.

[ly-ray lines and continua:
- continuum up to 1 MeV produced by non-relativistic
electron bremsstrahlung
- >10 MeV continuum is due to relativistic electron
bremsstrahlung.



Flare radiation and emission mechanisms
(contd.)

y-ray emission (contd.)

- narrow lines in 4-7 MeV range produced when
accelerated p* and a particles interact with ambient
heavy nuclei.

- strongest y-ray line is the neutron capture line at
2.23 MeV, with another strong line at 0.511 MeV due
to positron annihilation.



Loop-Loop
Interactions

Magnetic-
reconnectio
1




Standard flare scenario after reconnection

0. Build-up of non-potential fields - field annihilation — reconnection -
particle acceleration

.\ pleco™

2. Radio U
Synchrotron

3. Prompt hard-X 5. Evaporation
& optical bursts of hot plasma

4. Heating -
overpressure — mass
motion




LDE (long duration event) flare
(SXT, ~ 1 keV. Tsunetaetal 1992 )

21-FEB-1992 Flare SXT Image Filter : AlL1
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From Fast Electrons to
Bremsstrahlung Photons
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Thick-target bremsstrahlung

Thick-target bremsstrahlung occurs when an electron enters a

thick material, loses energy by multiple collisions with the atoms
and electrons in the material, and may eventually come to rest.

The rapid deposition of nonthermal kinetic energy causes an
explosive pressure increase in the chromosphere such that heated

material "evaporates" into the corona (e.g., Antonucci, Gabriel, &
Dennis 1984).



Magnetic Activity:

Flaring activity (radio wavelenghts ,
X-rays%

Spots

Cromospheric activity



The Phenomenon of Stellar
Activity
Red dwarfs
Solar-type stars

RS CVn stars

T Tauri stars

A WO N -

Svetlana V. Berdyugina:
http://solarphysics.livingreviews.org/Articles/Irsp-

2005-8/
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Weak-line T Tauri Stars

are pre-main
sequence
objects,

Manl
where the seauence
radiative zone
either is still
missing or is
deeply
embedded and
therefore _ ~
corresponds to a -
very different
situation with | - | i |
respect to the 40000 20000 10000 5000 2500
thin convective T (K)

shell of the Sun.

TTauri
stars

O B A F
spectiral type




Principle of Doppler imaging

K.G.
Strassmeier

ﬁ

Intensity

Doppler imaging Is a technique, which uses a series of
spectral line profiles, of a rapidly rotating star, to compute the
stellar surface temperature distribution.
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Doppler Imaging
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As a spot moves across

?Ner continuum
the star the line

profile changes. From
an observed line
profile, one can
construct an image of
the surface of the
star. This technique
has been applied to
many different types
of stars.



Doppler imaging,

Missing flux from
spots produce line
profile deformations

'‘bumps' move from
blue to red wing of
the profile due to the
'‘Doppler’ effect.

Position of spots
correspond to spot

| tPot am 1m Oktober 2003, M. Weber REE
Ongl u %%www aip.de/groups/activity

et




Doppler imaging, ¢

Indication of the
latitude (more
uncertain than the
longitude)

bumps’ from high
latitude spots start out

somewhere in the
middle of the line v
wing, low latitude

S pOtPSots%.gnll:rlr’l] gkt!)LQ?OOZ%, M. Weber

S h ou I d@ﬂ/ www.aip.de/groups/activity



The Phenomenon of Stellar
Activity
Red dwarfs and BY Dra phenomenon

Solar-type stars
RS CVn stars

T TQI |r| stars

00|I\)—\

1N

2 Solar-type stars

Stars on the lower main-sequence are known to show
chromospheric activity similar to that on the Sun which is detected,
e.g., in the Ca |l H & K emission (Wilson, 1978).

Svetlana V. Berdyugina:
http://solarphysics.livingreviews.org/Articles/Irsp-

2005-8/
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Activity
Cycles

Long term
chromospheric
activity indices for
several stars
showing different
patterns of activity
cycles
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