Progress on 1mm-VLBI with Apex

Micro-arcsecond scale imaging of black holes and jet nozzles

T.P.Krichbaum

(on behalf of the EHT mm-VLBI team)

Max-Planck-Institut für Radioastronomie Bonn, Germany

tkrichbaum@mpifr.de

people involved:

- MPIfR: W. Alef, U. Bach, A. Bertarini, T. Krichbaum,
 - H. Rottmann, A. Roy, J. Wagner, J.A. Zensus, et al.
- APEX: R. Güsten, K. Menten, D. Muders, and the APEX Team
- IRAM: M. Bremer, S. Sanchez, A. Grosz, K. Schuster, et al.
- OSO: M. Lindqvist, I. Marti-Vidal, H. Olofsson, M. Pantaleev, et al.
- INAF: G. Tuccari, et al.
- ESO: R. Laing, L. Testi, et al.
- 1mm VLBI, EHT collaboration:
- Haystack: R. Capallo, G. Crew, S. Doeleman, V. Fish, R. Lu, M. Titus, et al.
- <u>Carma:</u> G. Bower, R. Plambeck, M. Wright, et al.
- JCMT: P. Friberg, R. Tilanus, et al.
- <u>SMA:</u> R. Blundell, J. Weintroub, K. Young, et al.
- <u>SMTO:</u> R. Freund, D. Marrone, P. Strittmatter, L. Ziurys et al.

Scientific Motivation:

Detailed understanding of initial jet formation, acceleration and collimation. Image region around SMBHs, test GR near event horizon and test jet launching models.

The Innermost Stable Circular Orbit

• ISCO at R = 1 GM/ c^2

 Frame-dragging rotationally supports orbits close to BH

from talk by Laura Brenneman (CfA)

- Non-spinning BH.
- Accretion disk still rotates!

• ISCO at R = 6 GM/ c^2

 No frame-dragging: orbits cease to spiral in and instead plunge toward BH inside ISCO

 Maximally-spinning *retrograde* BH
(spinning in opposite direction as disk)

• ISCO at R = 9 GM/ c^2

 Frame-dragging acts in opposition to disk angular momentum, causing orbits to plunge farther out

Interpretation of the 1mm VLBI size measurement

gravitationally lensed image of accretion disk

orbiting hot spot / instability

Broderick & Loeb 2008

image credit: Noble & Gammie Doeleman *et al. Nature* **455**, 78-80 (2008)

observed size: 43 (+14/-8) µas

deconvolved : 37 µas

intrinsic : 3.7 R_s

Observed size is smaller than expected size of accretion disk

 \rightarrow emission from hot spot or width of crescent shaped photon ring ?

Time resolving BH orbits and determination of ISCO

Fish et al. 2013, Doeleman et al. 2009

Fringe detection with APEX at 230 GHz (May 7, 2012)

1mm fringes established

existing station

First VLBI fringes with APEX at 230 GHz (May 7, 2012)

3C279 and MK5C, DBE & DBBC, 1.92 Gbit/s, 480 MHz bandwidth

APEX – SMTO (Arizona): SNR 12.7 D=7170 km

APEX – SMA (Hawaii): SNR 12.3 D=9450 km

credit: A. Roy and Apex team

North-South extension seen at 1mm confirmed by 3mm VLBI

base of jet is transversely resolved and has a width of ~1 pc (~10⁴ R_S) size of individual components (emission regions) < 0.1 pc (1000 R_S)

The next step towards truly global 1.3 mm VLBI array (EHT) Status March 2013 with APEX added

Antenna Properties 1.3mm VLBI March 2013

Ant.	Code	D_eff	Tsys_eff	Gain	App.Eff	SEFD	Pol.	Comment		
		[m]	[K]	[K/Jy]		[Jy]				
PICO	V	30	250	0,110	0,43	2273	dual			
APEX	Α	12	360	0,026	0,63	13846	LCP	Coherence loss 1,5		
SMTO	S	10	250	0,018	0,64	13889	LCP			
CARMA	F	21,6	300	0,0759	0,57	3953	dual	4x10,4m+4x6,1m, phasing		nasing=0,9
SMA	Ρ	15,1	300	0,045	0,69	6667	LCP	7x6m, phasing=0,9		
JCMT	J	15	200	0,040	0,63	5000	RCP			

Baseline Sensitivity (7sigma, 10sec, 500 MHz, 2 Gbps):

APEX-PICO	0,45	Jy
APEX-CARMA	0,59	Jy
APEX-SMA	0,76	Jy
APEX-JCMT	0,66	Jy
APEX-SMTO	1,10	Jy

2 Gbps \rightarrow 32 Gbps:

Factor 4 improvement possible

5.2

5.2 1.1

65.1

3.0

strong fringes to APEX on several bright mm-sources

Control file: ../cf_1234 Input file: /Exps/a25gl/2222/No0002/FS..xahoga Output file: Suppressed by test mode

low SNR at Pico Veleta due to very bad weather and a DBBC configuration problem

Preliminary Summary of APEX VLBI Source detections (Jan. 2014)

Source	Z	DOY	UT	Baseline	SNR	В	size	lin. size	R_s
			[hrs]			[Mlambda]	[muas]	[pc]	
3C273	0,158	82	7h40	AP-SMTO	11	5422	26	0,083	853
3C279	0,5362	82	8h00	AP-CARMA	12	6041	21	0,220	2262
3C84	0,0176	82	20h30	AP-CARMA	8	5626	22,4	0,008	82
1749+096	0,322	82	14h40	AP-SMTO	12	4830	26	0,170	1748
BLLAC	0,0686	84	12-17	AP-CARMA	50-145	5400	21	0,029	298
BLLAC		84	12-17	AP-SMA	20-44	7200	17,5	0,024	247
BLLAC		84	12-17	AP-SMTO	20-43	5380	23,4	0,032	329
2013+370	0,859	84	12-15	AP-CARMA	16-25	5900	21,4	0,160	1645
2013+370		84	12-15	AP-SMA	7-13	7200	17,5	0,140	1439
2013+370		84	12-15	AP-SMTO	8	5300	23,9	0,180	1850

- highest SNR: BL Lac on APEX-CARMA, SNR = 145
- smallest angular scale, BLLac, 2013+37, 17.5 μ as (~ 250 R_s)
- smallest linear scale, 3C84, ~ 82 Schwarzschild radii
- typical resolution for AGN < 0.1-0.2 pc (< 2000 R_s)

Central Engine of 3C84 (NGC1275) detected with

Size of nuclear region and jet base: 22 μ as corresponding to a linear scale of 9 lightdays or 82 R_S⁹ in units of the central SMBH \rightarrow great potential for future studies !

Sgr A* not yet seen on APEX baselines, but lower size limit:

 S_{corr} < ~0.5 Jy @ 5400 – 7200 M λ

A: APEX P: SMA S: SMTO F: CARMA

 $\Theta \ge 21-27 \ \mu as \ (2.1 - 2.7 \ R_s)$ in N-S direction

stations: Pico, PdBI, SMTO, KPMM, CARMA, SMA, LMT, ALMA/APEX

Size of SgrA* and APEX detection limit

for $S_{\text{limit}} \ge 100 \text{ mJy} \rightarrow \text{size } \Theta \le 33.5 \text{ } \mu\text{as} (3.3 \text{ } \text{R}_{s})$

note: non Gaussian brightness distributions may increase correlated flux

Testing the "no-hair theorem" using mm-VLBI with APEX/ALMA

"No-hair" theorem of General Relativity:

A Black Hole is uniquely defined by its mass (monopol moment) and spin (dipole moment).

Figure 4: Testing GR. The left three images show the best fit RIAF model for SgrA* ray-traced through space times with $\varepsilon = -1$, $\varepsilon = 0$, and $\varepsilon = +1$. If $\varepsilon \neq 0$, then SgrA* is either not a GR black hole, or GR does not describe the space time of black holes.

quadrupole moment:
$$Q = -M(a^2 + \varepsilon M^2)$$

 $\varepsilon \neq 0$, GR is violated

mm/ sub-mm VLBI can test the validity of General Relativity near a SMBH (but: excellent image fidelity required) !

Doeleman et al. 2009, Astro2010

Enhanced Accretion can hide Photon Ring

GRMHD simulation: BH und accretion flow

accretion rate increases

critical rate: > 8 M_0 @230 GHz shadow disappears > 16 M_0 @345 GHz

Moscibrodzka et al. 2012

Do we need APEX when ALMA is there ?

- phasing capability of ALMA for VLBI is now beeing developed
- 1st VLBI test experiments with ALMA sub-array expected in 2015/2016 (APP)
- sensitivity of phased ALMA array will be sqrt(N) better than APEX, but:
 - APEX required for initial VLBI tests with ALMA during APP transition period
 - VLBI time at ALMA will be very limited due to heavy oversubscription
 - ALMA not needed for every AGN study
 - better scheduling flexibility of APEX than ALMA
 - a VLBI telescope in Chile always improves the angular resolution by ~2
 - need many stations for image fidelity (self calibration needs > 10 stations)
 - combination of APEX with other telescopes in the South (LLAMA, LMT, SPT)
 - VLBI at 345 GHz soon

Future: Continuous increase of recording bandwidth

Mark 6: 16 Gbps (4 GHz bandwidth) 4 modules (each 8 disks) helium filled disks for high altitude

Whitney et al. 2013

Final stage: 2 x 8 GHz BW (64 Gbps, factor sqrt (64/2) = 8 sensitivity increase !

Testing GR near Black Holes and study the origin of jets with global 1.3 mm VLBI

see EHT Whitepaper (Fish et al. 2013)

- achieve 10-20 micro-arcsecond resolution at sub-mm wavelengths
- image Sgr A* and M87 with a few R_G resolution (<u>BH imaging and GR-effects</u>)
- study jet formation and acceleration in nearby Radio-Galaxies (jet-disk connection, outburst ejection relations, etc.)
- study AGN and their SMBHs at high redshifts (cosmological evolution of SMBHs)
- establish a global 1mm VLBI array: PV, PdBI, SMTO, SMA, CARMA, LMT, SPT, APEX/ ALMA (Event Horizon Telescope).
- add ALMA through ALMA phasing project (APP)

M87+ AGN Jets:

Thats it for today. Have a nice dinner and thank you !