# The Global Millimeter VLBI Array:

The central regions of Active Galactic Nuclei and the Origin of Jets

T.P.Krichbaum & J.A. Zensus (on behalf of the GMVA team)

Max-Planck-Institut für Radioastronomie Bonn, Germany

tkrichbaum@mpifr.de, azensus@mpifr.de

#### <u>GMVA:</u>

IRAM: M. Bremer, A. Grosz, M. Ruiz, S. Sanchez, C. Thum, et al.

MPIfR: W. Alef, U. Bach, D. Graham, T. Krichbaum, R. Porcas, A. Zensus, et al.

Onsala: J. Conway, M. Lindquist, H. Olofsson, et al.

Metsähovi: A. Mujunen, M. Tornikoski, E. Valtaoja, et al.

NRAO-VLBA: V. Dhawan, C. Walker, et al.

Scientific Contributions/Collaborations:

Boston: A.Marscher, S. Jorstad, I. Agudo, et al.

KVN: S.S. Lee, B.W. Sohn, et al.

MIT-Haystack: S. Doeleman, V. Fish, et al.

FGAMMA program: L. Fuhrmann, M. Angelakis, I. Nestoras, et al. (MPIfR)

special thanks for providing data or figures, partly prior to publication: T.Savolainen (MPIfR), M. Gurwell (SMA), Boston group, Michigan group, Mojave team

# Motivation for mm-VLBI: The Physical Origin of Jets



#### Broad-band Spectral Energy Distribution – Relation to source structure

#### <u>3C454.3 – Spectral Variability in Radio-Bands</u>



data: FGAMMA collaboration (Fuhrmann et al.)

spectral variability most pronounced and fastest at mm-/submm  $\lambda$  (turnover  $v_{max} \sim 40-230$  GHz) variability timescales of days to months lead to sizes of ~1-100 µas (or < 5-50 milli-pc)

 $\rightarrow$  need mm-VLBI to monitor these regions !

complex spectral evolution time-lags vary between flares mm-variability: high  $T_B > 10^{11...12}$  K I. Pauliny-Toth's: "superluminal brightening"



# What does VLBI at short millimeter wavelengths offer ?

- Study compact galactic and extragalactic radio sources and their jets with an angular resolution of a few ten micro-arcseconds in early stages of their kinematic evolution.
- Image regions which are (self-) absorbed and therefore not observable at longer cm-wavelength (spectrum, radiation/energy transport, outburst – ejection relations from radio to γ – rays, counter-jets + torus).
- Study of the region of jet formation with highest achievable resolution (size & shape of jet at its base, 3D curvature + transverse jet structure, kinematics, spectrum, polarization & B-field).
- For nearby SMBHs (SgrA\*, M87) reach scales of ≤ ~10 gravitational radii, image Event Horizon and regions where GR-effects become important (orbital motion in accretion disk, light-bending, relativistic precession, frame dragging + BH rotation, jet-disk coupling (GRMHD), jet nozzle).

For all of this we need a high as possible observing frequency and a small as possible observing beam. Global VLBI at  $\geq$  86 GHz provides this.

# The Global Millimeter VLBI Array (GMVA)

## Imaging with ~40 $\mu$ as resolution at 86 GHz

**Baseline Sensitivity** 

in Europe:

<u>30 – 300 mJy</u>

in US:

<u>100 – 300 mJy</u>

transatlantic:

<u>50 – 300 mJy</u>

Array:

<u>1 – 3 mJy / hr</u>

(assume  $7\sigma$ , 100sec, 512 Mbps)

http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm

- Europe: Effelsberg (100m), Pico Veleta (30m), Plateau de Bure (35m), Onsala (20m), Metsähovi (14m), planned: Yebes (40m)
- USA: 8 x VLBA (25m)

Proposal deadlines: February 1<sup>st</sup>, October 1<sup>st</sup>



#### History of 3mm-VLBI

- 1981: first mm-VLBI experiments successful
- early 1990's: formation of the Coordinated Millimeter VLBI Array (CMVA) by Haystack observatory in conjunction with a number of mm-capabale observatories
- throughout the 1990's: efforts to enhance and expand this collaboration e.g. provision of VLBI recorders and masers to IRAM by MPIfR, outfitting VLBA antennas with 3mm receivers
- 2002: disengagement of Haystack obs. and last CMVA session in Autumn 2002
- early 2003: MPIfR initiative to continue the facility, MoU between MPIfR, NRAO, IRAM, OSO and MRO for future, global VLBI at 3mm

new organisation: the Global mm VLBI Array (GMVA)

- September 2003: first GMVA Call for proposals, include phased PdB
- April 2004: first GMVA observations
- 2005: switch to MK5A disk recording, add dual polarisation
- 2007/2008: PdB upgrade (better phasing stability, new H-maser)
- 2009: new EMIR receiver at PV, better sensitivity

## Current Operation of the GMVA

- Observing sessions
  - 2 sessions per year (spring/autumn), each up to 5 days duration (dates fixed 6-12 months in advance)

#### Proposing for observations

- proposal deadlines 1st February, 1st October), 'Call for proposals' 6 months in advance
- information for astronomers wishing to use the GMVA is provided by a web page: <u>http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm/index.html</u>
- proposal review by participating GMVA observatories following their own internal procedures. Results collated by the European GMVA Scheduler, a joint decision is made together with the VLBA scheduler regarding scheduling

#### Observations

- European and VLBA schedulers jointly agree a block schedule for each session
- PI of proposals provide scheduling details of their observations in collab. with the Schedule Coordinator at MPIfR
- Schedule Coordinator provides a final, integrated session schedule to the GMVA observatories (taking into account e.g. need for pointing checks, antenna calibration, etc.)
- individual GMVA observatories perform the observations on behalf of the investigators with often MPIfR logistical and observing support and expertise at the IRAM sites
- disk-based MK5 recording systems: recording rate of 512 Mb/s as default for all GMVA continuum observations
- correlation at Bonn MK4 correlator; data conversion to UV-fits AIPS standard

# Enhance 3mm global VLBI by including the 3 largest European high frequency-telescopes:



Baseline lengths (km):

|     | PdB | PV   |
|-----|-----|------|
| EB  | 658 | 1700 |
| Pdb |     | 1146 |

fringe spacing: 0.4 – 1.1 mas,

sensitivity > 50 -90 mJy (7 $\sigma$ , 512 Mbps)



Pico Veleta 30 m (IRAM, Spain)



#### **GMVA Proposal and Observation Statistics 2003 – 2010**

#### Proposals

- 15 proposal deadlines since October 2003 with a total of 61 submitted proposals (including Oct. 2010), many for multi-epoch monitoring covering several sessions
- dual polarisation requested now in most proposals, spectral line (SiO masers) in 1 proposal, often strong and compact (famous) AGNs for up to 6 epochs (e.g. 3C84, 3C454.3, BL Lac, OJ287, NRAO150), γ-ray sources (Fermi, Boston, Bologna)
- 20 out of the 61 so far reviewed proposals rejected, 5 approved for partial observation
- 4 MPIfR-IRAM add hoc observations, ToOs

Detailed Proposal and Observation statistics:

about 70% of the proposals make it on the sky

| Deadine Year  | Proposals | s rejected Observations |     | rejected |
|---------------|-----------|-------------------------|-----|----------|
|               |           |                         |     |          |
| October 2003  | 6         | 0                       | 11  | 0        |
| February 2004 | 8         | 3,5                     | 15  | 7        |
| October 2004  | 4         | 1                       | 10  | 1        |
| February 2005 | 3         | 1                       | 9   | 3        |
| October 2005  | 3         | 2,7                     | 7   | 6        |
| February 2006 | 5         | 0                       | 18  | 0        |
| October 2006  | 2         | 1                       | 3   | 1        |
| February 2007 | 3         | 1                       | 8   | 2        |
| October 2007  | 6         | 3,3                     | 12  | 7        |
| February 2008 | 2         | 1,75                    | 5   | 4        |
| October 2008  | 4         | 2                       | 9   | 4        |
| February 2009 | 3         | 1                       | 4   | 1        |
| October 2009  | 3         | 1                       | 5   | 1        |
| February 2010 | 3         | 1,3                     | 8   | 4        |
| October 2010  | 6         |                         | 12  |          |
|               | )         |                         |     |          |
| Sum           | 61        | 20,55                   | 136 | 41       |



## Why is mm-VLBI still non-standard and requires special care ?

- variable weather, non optimum observing conditions, limited scheduling flexibility
- phase fluctuations and short atmospheric coherence time (< 20s)</li>
- limitations at telescopes (pointing, focusing, gain curves, low  $\eta_A$ , etc.)
- limited bandwidth, low SNR in 8-16 MHz wide IFs (frequency synthesis)
- alignment of IFs (man. phasecal problem)

#### Solution:

better control of telescope gain, larger bandwidth+DBEs, more mm-telescopes phase correction (WVR), improved analysis software (eg. fringe fitting), AND more accurate:

calibration, calibration, calibration, ....

Important: mm-VLBI relies on ampl. self-cal, works well only for N > 10 antennas

# Highlights from recent 3mm-VLBI with the GMVA



# Results from the new 3mm VLBI survey (127 sources):

$$T_{\rm b,s} = \frac{2\ln 2}{\pi k_{\rm B}} \frac{S_{\rm tot}\lambda^2}{d^2} (1+z)$$

# Brightness temperature decreasing with frequency ?



Brightness temperature increasing along jet; accelerating jets ?

a larger mm-VLBI AGN survey is needed !



Size of jet base appears too small for magnetic sling-shot acceleration. Direct relation to BH more likely  $\rightarrow$  a GR-MHD Dynamo ?



VLBA 43 GHz

#### Blandford – Payne mechanism:

centrifugal acceleration in magnetized accretion disk wind

# **BP versus BZ mechanism**

Blandford – Znajek mechanism:

electromagnetic extraction of rotational energy from Kerr BH



#### New:



#### Detection of the counter-jet of Cygnus A at 43 and 86 GHz



beam: 140 x 56 μas 0.15 x 0.06 pc

#### 43 GHz 2007.807 Global VLBI



gap between jet and counter jet at 43 GHz:  $\approx 0.5$  mas  $\sim 2200$  R<sub>s</sub> at 86 GHz:  $\leq 0.2$  mas  $\leq 880$  R<sub>s</sub>

#### New: Intrinsic Jet-to-Counterjet Ratio determined from 3mm-



#### 86 GHz GMVA images of 3C84: jet base resolved !



3C84 at 86.199 GHz in LL 2008 May 09

Nuclear region and sub-mas jet base resolved: 42  $\mu$ as corresponding to a linear scale of 16 lightdays or 142 R<sub>s</sub><sup>9</sup> in units of the central SMBH  $\rightarrow$  huge potential for future studies !

#### FERMI-LAT: Gamma-ray lightcurve of 3C454.3



+ Dermer et al. 2010, Ackermann et al. 2010

#### Origin of inter-day $\gamma$ -ray variability within unresolved mm-VLBI core ?

#### 3C454.3 – Quasi-simultaneous VLBI images at 7mm and 3mm

identical beam: 0.15 x 0.05 mas



two inner jet components at  $r \sim 0.08$  and 0.15 mas (0.6 / 1.2 pc)

Jorstad 2010: expected position K3 (T<sub>0</sub>=2007.93,  $\mu$ =0.09 mas/yr)  $\rightarrow$  r= 0.17±0.05 mas

#### OJ 287 in October 2009: comparison of outer structure



both maps convolved with tapered 1.2 x 0.52 mas beam

Faint jet seen at 15 GHz (VLBA) is also detected at 86 GHz in a strongly uv-tapered GMVA image! The imaging sensitivity of the GMVA will further improve with MK5C.

#### OJ 287 in October 2009: comparison of inner structure



both maps convolved with 0.1 mas circular beam

43 GHz VLBA & 86 GHz GMVA image both show a jet extending 0.4 mas (1.8 pc) south. It is misaligned by about 90 deg relative to the mas-scale jet !

#### OJ 287 in October 2009: Spectrum of inner jet



#### 86 GHz 2009 Oct 09



modelfit: 0.21 x 0.043 mas beam

quasi simultaneous radio spectrum from FGAMMA program VLBI component spectra from 15 + 43 + 86 GHz

#### Quality of VLBA images – The jet of 3C273

8 VLBA stations (no 3mm at SC and HN)

6 VLBA stations (KP and LA removed)



Dramatic loss (2.5) in image fidelity and sensitivity if the "wrong" VLBA stations would be removed !

data:T. Savolainen et al.

# Angular and Spatial Resolution of mm-VLBI

| λ      | ν       | θ                  | z=1     | <b>z=0.01</b> | d= 8 kpc             |
|--------|---------|--------------------|---------|---------------|----------------------|
| 3 mm   | 86 GHz  | $45 \mu as$        | 0.36 рс | 9.1 mpc       | 1.75 <sub>µ</sub> рс |
| 2 mm   | 150 GHz | 26 <sub>µ</sub> as | 0.21 pc | 5.3 mpc       | 1.01 <sub>µ</sub> рс |
| 1.3 mm | 230 GHz | $17 \mu as$        | 0.14 pc | 3.4 mpc       | 0.66 <sub>µ</sub> pc |
| 0.87mm | 345 GHz | 11 <sub>µ</sub> as | 0.09 pc | 2.2 mpc       | 0.43 μpc             |

linear size: ~10<sup>3</sup> R<sup>9</sup> 20-100 R<sup>9</sup> 1-5 R<sup>6</sup>

for nearby sources, these scales correspond to 1 - 100 Schwarzschild radii, depending on distance and black hole mass !

 $\rightarrow$  mm-VLBI can directly <u>image (!)</u> the vicinity of SMBHs (Event Horizon, BH-Shadow, GR-theory) !

 $\rightarrow$  best candidates: Sgr A\* (10 µas = 1 R<sub>s</sub><sup>6</sup>) and M 87 (Cen A is far south, M81 & NGC4258 are weak)

 $\rightarrow$  need sensitive mm-telescopes (ALMA) to image the emission around Black Holes in AGN

 $\rightarrow$  need both, European + US-telescopes to obtain optimum sensitivity and resolution.

## Observing Black Holes with mm-VLBI using the phased ALMA

image credit: NASA/CXS/M. Weiss

High speed jets ejected by Black Hole.

Disk of material spiraling into Black Hole.

-

The Black Hole:

measure curved space time, mass and spin

Image: Broderick & Loeb 2006

Orbiting hot spot and light bending

Size found by 1mm VLBI observations

 $3.7 R_{s}^{6}$ 

Doeleman et al. Nature **455**, 78-80 (2008)

#### mJy sensitivity with ALMA



# **Global 3mm VLBI: Future Sensitivities**

| Array        | Stations                        | Baseline | Array    | 12hr Map | Comment          |
|--------------|---------------------------------|----------|----------|----------|------------------|
|              |                                 | [mJy]    | [mJy/hr] | [SNR]    |                  |
| VLBA, 2 Gb/s | VLBA(8)                         | > 164    | 2,33     | 1.0e03   | no HN, no SC     |
| GMVA, 2 Gb/s | VLBA+EB+PV+PB+ON+MH             | > 33     | 0,86     | 2.8e03   | 68 mJy VLBA-IRAM |
| + Yb         | present GMVA+Yebes              | > 27     | 0,67     | 3.7e03   | 68 mJy VLBA-Yb   |
| + LMT + GBT  | present GMVA+Yebes+LMT+GBT      | > 10     | 0,30     | 8.2e03   | 31 mJy VLBA-GBT  |
| + ALMA       | present GMVA+Yebes+LMT+GBT+ALMA | > 5      | 0,19     | 12.9e03  | 5 mJy ALMA-GBT   |

assuming: 500 MHz bandwidth (2 Gbit/s), t=20 sec, 7 sigma fringe detection, 2 bit sampling

- Adding European mm-telescopes to the VLBA improves the angular resolution by factor ~ 2 and imaging sensitivity by a factor of ~3.
- The addition of telescopes with large collecting area (GBT, LMT, CARMA, SRT, ...) will give another factor of 2-3.
- Addition of ALMA leads to mJy sensitivities and improves the overall sensitivity by a factor of 10, over present day values.
- Another factor of sqrt(rate/ 2Gbit/s) in sensitivty will be obtained via a further increase of observing bandwidth.

# <u>Summary</u>

- 3mm VLBI imaging complements broad-band variability studies (SEDs) and is absolutely essential for the interpretation of results from satellite missions (e.g. PLANCK, FERMI, etc.).
- 3mm VLBI is needed to bridge the gap between cm-VLBI (up to 43 GHz) and planned submm-VLBI at 230/345 GHz (Event Horizon Telescope).
- Future addition of large apertures (ALMA, GBT, CARMA) will boost 3mm-VLBI to mJy sensitivities. (Note: 3mm VLBI helps to justify ALMA phasing effort.)
- Since the atmosphere limits the accuracy of the a-priori calibration, one needs a sufficiently large number of VLBI telescopes (> 10) to obtain reliable results from amplitude self-calibration.
- Because of the small observing beam and rapid structural variability of the sources, a much denser time sampling would be very desirable (>> 2 times per year).

## $\Rightarrow$ The VLBA can and "should" play a major role in this.



#### EVN/Global VLBI: Image Sensitivities

#### (numbers in µJy/beam)

| Array  | <b>90cm</b> | 18/21cm | 6cm | 3.6cm | <b>1.3cm</b> | 7mm | 3mm   |
|--------|-------------|---------|-----|-------|--------------|-----|-------|
| EVN    | 248         | 28      | 29  | 65    | 254          | 917 | -     |
| VLBA   | 691         | 91      | 97  | 95    | 156          | 321 | 895   |
| Global | 170         | 20      | 21  | 35    | 121          | 278 | -     |
| HSA    | 34          | 7       | 8   | 9     | 45           | 84  | -     |
| GMVA   | -           | -       | -   | -     | -            | _   | (290) |

assumptions: 512 Mbit/s, single polarisation, 2 bit sampling, 60 min. on source 1 sigma thermal noise, natural weighting

Future aim: mm-VLBI should reach similar sensitivity/performance as global VLBI at cm-wavelengths !

 $\rightarrow$  add stations + increase observing bandwidth to Gbit/s rates

 $\rightarrow$  expect to reach < 100 µJy/beam @ 86 GHz in 2011/12 (for 2 Gbit/s with MK5C)

#### **EVN/Global VLBI: Angular Resolution**

#### (numbers in milli-arcseconds)

| Array     | <b>90cm</b> | <b>18cm</b> | 6cm | 3.6cm | 1.3cm | 0.7cm | 0.3cm |
|-----------|-------------|-------------|-----|-------|-------|-------|-------|
| EVN       | -           | 15          | 5,0 | 3,0   | 1,00  | 0,55  | -     |
| EVN+Ur/Sh | 30          | 5           | 1,5 | 1,0   | 0,30  | -     | -     |
| EVN+VLBA  | 19          | 3           | 1,0 | 0,7   | 0,25  | 0,13  | -     |
| VLBA      | 21          | 4           | 1,4 | 0,9   | 0,30  | 0,17  | 0,10  |
| GMVA      | -           | -           | -   | -     | -     | _     | 0,04  |

spatial scale: for z = 1 ( $\Lambda$ CDM cosmology), 1 mas = 8 pc

sub-pc scale resolution only for global VLBI at  $\lambda \leq 3$ mm ! large IRAM telescopes important for sensitivity across Atlantic ! ALMA will revolutionize mm-VLBI

## Global VLBI at 3mm: Existing and possible future antennas

| Station         | Country | Diameter   | <b>Eff.Diameter</b> | Zenith Tsys | Gain   | App.Eff. | SEFD  |
|-----------------|---------|------------|---------------------|-------------|--------|----------|-------|
|                 |         | [m]        | [m]                 | [K]         | [K/Jy] | [%]      | [K]   |
| Effelsberg      | Germany | 100        | 80                  | 125         | 0,137  | 8        | 915   |
| Plateau de Bure | France  | 6x15       | 34,8                | 90          | 0,208  | 67       | 433   |
| Pico Veleta     | Spain   | 30         | 30                  | 90          | 0,141  | 55       | 639   |
| Onsala          | Sweden  | 20         | 20                  | 250         | 0,051  | 45       | 4882  |
| Metsähovi       | Finland | 14         | 14                  | 250         | 0,017  | 30       | 14944 |
| VLBA(8)         | USA     | 25         | 25                  | 100         | 0,034  | 19       | 2960  |
|                 |         |            |                     |             |        |          |       |
| future Europe   |         |            |                     |             |        |          |       |
| Yebes           | Spain   | 40         | 40                  | 100         | 0,205  | 45       | 488   |
| Noto            | Italy   | 32         | 32                  | 100         | 0,087  | 30       | 1144  |
| Sardinia (SRT)  | Italy   | 64         | 64                  | 100         | 0,350  | 30       | 286   |
|                 |         |            |                     |             |        |          |       |
| future America  |         |            |                     |             |        |          |       |
| GBT             | VA,USA  | 100        | 100                 | 100         | 0,996  | 35       | 100   |
| CARMA           | Ca,USA  | 6x10m+9x6m | 31,4                | 100         | 0,140  | 50       | 713   |
| LMT             | Mexico  | 50         | 50                  | 100         | 0,356  | 50       | 281   |
| ALMA            | Chile   | 50x12      | 85                  | 100         | 1,233  | 60       | 81    |
| ALMA, single    | Chile   | 12         | 12                  | 100         | 0,025  | 60       | 4068  |

MOU