分类号	密级
UDC	编号

中国科学院研究生院 博士学位论文

<u>致密射电源的高频 VLBI 观测研究:</u> <u>PKS 1749+096 和 VX Sgr</u>

路如森

指导教师		沈志强 研究员	ā
		中国科学院上海尹	云文台
申请学位级别	博士	学科专业名称_	天体物理
论文提交日期	2011年5月	论文答辩日期_	2011年6月
培养单位		中国科学院上海尹	元文台
学位授予单位		中国科学院研究	生院
答辩委员会主席			研究员 国家天文台)

High Frequency VLBI Studies of Compact Radio Sources: the cases of PKS 1749+096 and VX Sgr

Ru-Sen Lu

Supervisor:

Prof. Zhi-Qiang Shen

Shanghai Astronomical Observatory Chinese Academy of Sciences

June, 2011

Submitted in total fulfilment of the requirements for the degree of Ph.D. in Astrophysics 致 谢

值此论文完成之际,学生生涯终告一段落。谨在此向多年来给予我关心和 帮助的老师、同学、朋友和家人们表示最诚挚的谢意!

首先,我要感谢我 的导师沈志强研究 员,是沈老师带我进入到这 个看似枯燥却令人振奋的研 究领域。沈老师以他严谨的学风、 渊博的学识深深地影响着我。他 对各种问题的理解和把握,让我由衷地钦佩,潜移默化之中,使我感悟 到许多为学、为人的道理, 感激之情难以言表! 与此同时我还要感谢沈老 师多年来给予我及家人在生活上的关心和帮助。我也想借此机会对在德 国波恩学习和工作期间帮助过我的老师、同学和朋友们说一声谢谢。感 谢我的指导老师 Thomas P. Krichbaum 博士和 Anton Zensus 教授对我 的指导,支持和帮助。Zensus 教授的团组和 International Max Planck Research School for Astronomy and Astrophysics 为我提供了一个 良好的学习氛围,使我度过了一段美好的时光。老师们为我 细心周到的考虑使我深深体会到做老师的伟大。在此真诚 的说一声感谢! 我也想对从我进入天文台以来所有 帮助过我的老师和同学们说一声真挚的感谢! 需要感谢的人实在太多,不胜枚举。 谨以此文献给我最敬爱的父 母、妻子和女儿!

 \heartsuit

辛卯仲夏

摘 要

甚长基线干涉测量 (VLBI) 的出现为天文学研究提供了很高的角分辨率 (空间分辨率),为人们认识和理解活动星系核 (AGN) 现象、研究分子脉泽,从而探知其所处物理环境起到了不可替代的作用。毫米波 VLBI 以其独有的优势正在成为天体物理研究中最有效的研究工具之一。在对活动星系核和分子脉泽 (第一章) 以及射电干涉测量 (第二章) 进行简单介绍之后,本文在第三章简要回顾了射电干涉测量的发展过程,重点介绍了毫米波 VLBI 的发展历史与现状,及其在活动星系核研究中的重要作用。展望了未来几年随着一些大口径毫米波段望远镜 (以及望远镜阵列) 的加入,毫米波 VLBI 的发展及应用前景。

本文的第四章探讨了对 BL Lac 天体 PKS 1749+096 多个历元 (61 个)、多 个频率 (8, 15, 22, 43, 和 86 GHz)的 VLBI 观测结果。这些高分辨率的 VLBI 观测显示 PKS 1749+096 在 pc 尺度上存在着偏向东北方向延展的喷流结构。其 致密的核区流量占到 VLBI 总流量的 80% 左右。通过分析 VLBI 成份的谱,我 们确定了成份 D 为喷流的核,并且通过讨论能量均分条件下的磁场,我们得到 核区的均分态多普勒因子为 7.4,与通过运动学得到的喷流成份 (C5)的多普勒 因子基本一致。

对 C5 成份的流量演化的研究发现单纯的绝热膨胀模型和多普勒增亮模型 均不能很好地解释其流量的衰减,因而推断该成份可能远离能量均分状态而由 粒子主导,其流量的快速衰减除了膨胀的原因之外,可能还有逆康普顿散射的 贡献。对喷流成份运动学的研究显示在 PKS1749+096 中,喷流的速度存在"双 峰式"的分布,C9,C10,C11 的自行视速度明显快于其它成份,并且同时存在 ballistic 与 non-ballistic 的运动成份。我们得到成份的视速度位于 5–19 *c* 之间。 在 PKS1749+096 喷流中,拟合估算的喷流成份的喷出时间与射电总流量的爆 发时间之间有一定的对应关系,支持射电流量爆发与新成份产生相关的观点。

第五章讨论了对 M 型半规则变星 VX Sgr 拱星包层中的 43 GHz (v = 1, J = 1 - 0) 和 86 GHz (v = 1, J = 2 - 1) SiO 脉泽连续 10 天的高分辨率 VLBA 观测研究的一些初步结果。在我们观测的历元,脉泽的分布呈现不对称性,相比已有的观测表明其结构发生了明显变化,表明可能与观测时该源所处的不同恒星光学相位有关。2 个 SiO 脉泽跃迁均呈环形分布,43 GHz 的拟合结果表明

其半径大约为22.6 AU (~3个恒星半径),厚度约为3.7 AU。在天时间尺度上,脉泽的分布没有表现出明显的变化。通过比较两个频率上脉泽辐射的空间分布,发现它们处在离恒星相同的半径处,但是2个不同频率脉泽跃迁的空间分布并不重合。

关键词: 活动星系核,喷流,耀变体(PKS1749+096),红超巨星(VX Sagitta rii),连续谱 VLBI,谱线 VLBI

Abstract

Very Long Baseline Interferomety (VLBI) is a high-resolution imaging technique in radio astronomy. It has made substantial contribution to our understanding of active galactic nuclei (AGN) and the maser kinematics and their surrounding physical environments. In Chapter 3, we review the progress in VL-BI focusing on the development at millimeter wavelengths and its applications to AGN studies. The scientific potential of mm-VLBI with the participation of new generation large radio telescopes and interferometer arrays operating at short millimeter wavelengths is discussed.

In Chapter 4, we present results of multi-epoch multi-frequency VLBI observations of PKS 1749+096. PKS 1749+096 is a BL Lac object showing weak extended jet emission to the northeast of the compact VLBI core. The spectral properties of jet components, the magnetic field of the core and the evolution of flux density of component C5 are investigated. The study of the detailed jet kinematics at 15 and 22 GHz indicates the possible existence of a bimodal distribution of jet apparent speeds. The coincidence in time of components ejection and flares supports the idea that, at least in PKS 1749+096, ejection of new jet components is connected with major outbursts in flux density.

Chapter 5 reports out preliminary results of two SiO maser emission lines (v = 1, J = 1 - 0, and v = 1, J = 2 - 1) in the circumstellar envelope of the M-type supergiant, VX Sgr. The maser spots of both transitions show a ring-like structure. A fitting of a circle to the maser feature distributions at 43 GHz yields a mean radius of 22.6 AU (~3 stellar radii assuming that the central star is located at the center of the circle) and thickness of about 3.7 AU, consistent with the fact that SiO masers are typically emitted in the region of 2–4 stellar radii. Comparison with past observations in 1992/1994 and in 1999 shows that the overall maser emission morphology has changed substantially, indicating the variations of the mass loss direction. The two transitions are found to show non-coincidence in position although they locate at a similar distance from the

presumed central star.

Keywords: Active galactic nuclei, jet, Blazar (PKS 1749+096), red supergiant (VX Sagittarii), continuum VLBI, spectral line VLBI

目		录

致谢…			i
摘要…			ii
Abstra	$\mathbf{ct} \cdots \cdots$		iv
目录…			vi
第一章	引言 ·		1
1.1	活动星	系核	1
	1.1.1	活动星系核的分类及统一模型 ·····	2
	1.1.2	秒差距尺度上的相对论性喷流	3
1.2	天体脉	泽 · · · · · · · · · · · · · · · · · · ·	11
	1.2.1	简介 · · · · · · · · · · · · · · · · · · ·	11
	1.2.2	恒星脉泽	13
第二章	VLBI	基本原理 ······	18
第三章	毫米波	VLBI 的发展与展望 ······	21
3.1	引言		21
3.2	射电干	涉测量发展回顾 · · · · · · · · · · · · · · · · · · ·	21
3.3	毫米波	VLBI ·····	23
	3.3.1	毫米波 VLBI 观测研究的优势 ······	23
	3.3.2	毫米波 VLBI 观测研究的困难 ······	24
	3.3.3	毫米波 VLBI 的发展	25
	3.3.4	毫米波 VLBI 对活动星系核研究的意义	27
3.4	展望…		28

第四章	PKS 1749+096 的高分辨率 VLBI 观测研究	31
4.1	简介 · · · · · · · · · · · · · · · · · · ·	31
4.2	观测和数据处理	32
4.3	结果	34
	4.3.1 pc 尺度的形态	34
	4.3.2 喷流成份的谱及核的证认	34
	4.3.3 C5 成份 ······	38
	4.3.4 喷流的运动学	40
	4.3.5 喷流的物理参数	45
4.4	讨论	45
	4.4.1 结构变化	45
	4.4.2 BL Lac 类天体喷流的运动学	47
4.5	小结	48
体工立	WV G	40
弗 五草	VX Sgr SiU 脉泽的高分辨率观测研究 ····································	49
5.1		49
5.2	观测和数据处理 ······	50
5.3		07
	5.3.1 脉准形态	67 70
- ,	5.3.2 43 和 86 GHz SiO 脉洋比较 ······	73
5.4	小结	75
第六章	总结与展望 ······	77
附录 A	PKS 1749+096 的洁化图及模型拟合结果 ······	78
附录 B	VX Sgr 43 GHz SiO 脉泽速度积分的总流量图	97
附录 C	VX Sgr 43 GHz SiO 脉泽 "feature"的参数	101
发表文章	章目录 · · · · · · · · · · · · · · · · · · ·	147

目	录	viii	

简历 ····································	48
---	----

表 格

1.1	几种常见脉泽的首次发现	13
1.2	晚型星中常见的脉泽 ······	15
3.1	已有的和正在规划建设中的一些短毫米波望远镜的特征及参数 ···	30
4.1	PKS1749+096 喷流成份谱拟合的结果	36
4.2	22 GHz 喷流成份自行的线性拟合结果	41
4.3	15 GHz 喷流成份自行的线性拟合结果	43
5.1	43 GHz SiO 脉泽拟合结果总结 · · · · · · · · · · · · · · · · · · ·	73
A.1	图 A.1 所示的 PKS 1749+096 洁化图的参数	78
A.2	PKS 1749+096 的模型拟合结果	87
B.1	SiO 脉泽速度积分总流量图的参数 ······	100
C.1	43 GHz SiO 脉泽 "feature" 的参数 ······	101

1.1	活动星系核主要组成部分的示意图	3
1.2	喷流视速度随视角的变化	5
1.3	光度的多普勒增亮随视角的变化	5
1.4	依赖频率的喷流核位置偏移示意图	7
1.5	AGN 辐射结构示意图	11
1.6	CSE 中恒星脉泽示意图	14
1.7	TX Cam 中 SiO 脉泽壳层平均半径与恒星相位的关系	16
2.1	一个二元干涉仪示意图	19
4.1	PKS 1749+096 在 8, 15, 22, 43, 以及 86 GHz 的图像 ······	35
4.2	PKS 1749+096 喷流成份的谱	36
4.3	C5 成份的流量密度在 15 GHz 的演化	38
4.4	C5 成份谱的演化 ······	39
4.5	22 GHz 喷流成份离核的距离以及位置角随时间的变化	40
4.6	15 GHz 喷流成份离核的距离以及位置角随时间的变化 · · · · · · · ·	42
4.7	C6和C7成份在天空平面的运动轨迹	43
4.8	PKS 1749+096 在 15 GHz 的总流量图	44
4.9	喷流位置角随着离核距离的变化	46
4.10	喷流的脊线随着时间的变化	47
5.1	VX Sgr 的光变曲线 ······	50
5.2	带通改正前后比较	51
5.3	多普勒速度改正前后比较	52
5.4	条纹拟合前后比较	53
5.5	幅度校准时作为"模板"的 MK 天线的总功率谱	53

5.6	幅度校准前后比较 ······	54
5.7	LA-PT 基线的互相关谱 · · · · · · · · · · · · · · · · · · ·	54
5.8	VX Sgr 43 GHz SiO 参考通道洁化图	55
5.9	43 GHz SiO 脉泽的速度结构图	56
5.10	VX Sgr 43 GHz SiO 多通道洁化图	57
5.11	MK 天线总功率谱与 VLBI 互相关功率谱的比较	68
5.12	43 GHz SiO 脉泽 "feature" 的空间、速度分布	70
5.13	43 和 86 GHz 的总强度图 ······	74
A.1	PKS 1749+096 的洁化图	81
B.1	43 GHz SiO 脉泽的总流量图 ······	97

第一章 引言

本章简要介绍该论文工作的基础背景知识。第一部分简要介绍目前对活动 星系核 (Active Galactic Nuclei, AGN)的认识及活动星系核中相对论性喷流研 究的主要热点问题。第二部分概述分子脉泽研究的简要历史、基本理论、和当 前的观测进展等。

1.1 活动星系核

活动星系核,一般是指在星系的中心很小的核心区域内 (< 1 pc³)存在着 非常高光度的辐射 (~ 10⁴⁶ erg/s)的现象。这些辐射分布在从射电波段到γ射线 很宽的电磁波谱内。对于活动星系核的能源产生机制,目前人们广为接受的解 释是辐射能来源于其中心超大质量黑洞吸积周围的物质时所释放的引力能,而 不是热核反应。

活动星系核不像细胞核那样是一个实体,因而很难定义。通常是根据它的 主要观测特征来判断。活动星系核的主要观测特征可以简要地概括为以下几个 方面 (黄克谅, 2005):

- 存在着明亮的致密核区。一些活动星系核,比如类星体,从地面望远镜 看去,除极少数外,绝大多数类星体只能观测到致密核区。有些活动星 系核,虽然可观测到寄主星系,但致密核区的辐射占了星系总辐射的相 当大的部分。
- 在射电、光学、X 射线等波段存在非热连续辐射,其辐射谱呈幂律形式: $S_{\nu} \propto \nu^{\alpha}$,且辐射是偏振的。在某些波段的辐射是热致的,但热辐射并不起源于恒星。
- 存在强的原子和离子发射线。
- 连续辐射的强度,发射线的强度和轮廓,偏振等可能随时间变化。
- 活动星系核比正常星系具有更强的发射高能光子 (X 和 γ 射线) 的能力。

活动星系核具有以上全部或部分的观测特征。有些星系,如银河系,中心有星 系核,可能具有以上所列的部分观测特征,但核的辐射功率与整个星系的辐射 相比微不足道,这种星系核因而被称作低光度活动星系核。

1.1.1 活动星系核的分类及统一模型

目前我们已经知道,活动星系核有很多子类,然而对它们进行系统的分 类却并不容易。早期研究所做的的分类大都依据部分观测结果进行,并沿用 至今。主要的类型有:赛弗特星系、类星体、射电星系、蝎虎天体和光学剧变 类星体等。不同子类活动星系核的观测特征在此不做详述,可以参考黄克谅 (2005)。由于分类是按观测特征进行的,因而可能只反映了活动星系核的表象, 造成各种子类型之间有互相的交叠。这促使人们意识到分类的背后可能有着统 一的物理过程,而不同子类可能是由于某些参数的不同而造成。正如其它的科 学领域一样,人们总是期望用一个统一的理论来解释形形色色的观测现象,同 样人们期望于用一个统一模型来解释活动星系核各子类的各种观测特征。目前 流行的统一模型(Urry & Padovani, 1995)认为活动星系核表现出不同的观测特 征主要取决于活动星系核相对观测者视线方向的取向(即视向效应)。活动星系 核的基本组成包括以下几个主要部分(参见图 1.1):

- 活动星系核的中心区域存在着一个超大质量的黑洞,其质量为10⁶⁻⁹ M_☉, 黑洞的周围存在一个较差转动的吸积盘。被黑洞吸积物质的引力势能是 活动星系核所辐射巨大能量的最终来源。黑洞周围的物质由于粘滞和湍 流过程通过吸积盘掉入黑洞。吸积盘的辐射主要集中在紫外或软 X 射线 波段。
- 黑洞周围存在高速运动的气体云 (宽线区),可以发射非常强的光学和紫 外发射线。在一些视线方向,光学和紫外的辐射会受到吸积盘和宽线区 外分子气体尘埃环 (torus)的遮挡。
- 尘埃环外,速度相对较慢的气体云(窄线区)发射窄发射线。
- 物质在吸积盘内侧靠近黑洞的地方掉入黑洞,产生巨大能量辐射的同时, 形成物质喷流 (jet)。由于磁场的约束,这些物质喷流只能够沿着磁轴的 方向,通常沿着与吸积盘平面相垂直的方向高速喷出。

• 在盘内区或其附近形成发射硬 X 射线的冕区 (图 1.1 中未标出)。

图 1.1: 活动星系核主要组成部分的示意图 (图片来源: astronomyonline.org; Brooks/Cole Thomson Learning)

在经典统一模型中,尘埃环的存在是活动星系核在不同视角表现出不同 观测特征的主要因素。例如对于 Seyfert1型和 2 型星系来说,其观测特征的差 异 (是否存在宽发射线)源自于观测者的视线和尘埃环的相对方向的不同。对 Seyfert1型星系而言,尘埃环的轴向与视线接近,观测者可直接看到核心区域 以及宽线区,而对于 Seyfert2型星系,观测者的视线被尘埃环遮挡,因而只能 看到延展的窄线区,二者没有本质上的区别。另一个造成活动星系核观测各向 异性的原因是相对论性的聚束效应。当活动星系核中的喷流团块以相对论性速 度朝向观测者运动时,辐射主要集中在其运动的方向,并且强度显著增强,而 反向喷流强度则减弱。早在 40 多年前,Shklovskii (1964) 就认为象 Cygnus A 这样典型的射电星系具有对称的射电瓣,那么相应的为之提供能量的喷流结构 也应该是双边的,而象 M 87 和 3C 273 的单边喷流结构是 Doppler 增亮造成的 (另见§ 1.1.2)。

1.1.2 秒差距尺度上的相对论性喷流

在秒差距 (pc) 尺度上,高分辨率甚长基线干涉测量 (VLBI) 揭示喷流保持 了很好的准直性,表明中央能源被限制在很小的区域内,并且喷流是在几个 pc、甚至更小的尺度上形成的 (Junor et al., 1999)。视超光速现象 (Rees, 1966; Pearson et al., 1981) 的经常性出现则表明了喷流相对论性的外向运动,其单边 性或者至少高度的不对称性与辐射的相对论性聚束效应是相一致的。本节简要介绍喷流的相对论效应以及当前活动星系核 (耀变体及射电星系) pc 及亚 pc 尺度上相对论性喷流研究的一些热点问题,侧重于探讨高分辨率 VLBI 观测研究的几个方面及其对认识和理解这些问题的重要性。当前,对一些具有代表性的射电源进行的厘米和毫米波 VLBI 高分辨率监测研究已经大大增进了人们对喷流的认知 (Zensus, 1997; Lobanov, 2010, 及其中的参考文献)。

1.1.2.1 相对论效应

由于相对论效应,我们观测到的喷流速度 β_{app} ,光度 L_{app} 和亮温度 T_{obs} 是通过多普勒因子 δ 、洛伦兹因子 $\Gamma (\equiv \frac{1}{\sqrt{1-\beta^2}}, \beta$ 为以光速为单位的喷流速度) 以及喷流运动方向与观测者视线的夹角 θ 与共动坐标系内的内禀值相联系的。 视速度 β_{app} ,观测到的光度 L_{app} ,亮温度 T_{obs} 和多普勒因子 δ 可以分别通过洛 伦兹因子 Γ ,观测者视向角 θ 以及喷流内禀光度计算出。对速度为 β 、与观测 者视线夹角为 θ 的喷流团块,其视速度为:

$$\beta_{\rm app} = \frac{\beta \sin \theta}{1 - \beta \cos \theta}.$$
(1.1)

观测到的光度 Lapp 为:

$$L_{\rm app} = L_{\rm int} \delta^n, \tag{1.2}$$

其中, L_{int} 为内禀光度, $\delta = \frac{1}{\Gamma(1-\beta\cos\theta)}$ (方程 4.7),n取决于喷流的几何形状及 谱指数,通常位于 2–3之间。观测到的亮温度 T_{obs} 与内禀亮温度 T_{int} 的关系为:

$$T_{\rm obs} = T_{\rm int}\delta. \tag{1.3}$$

图 1.2 给出了对不同的喷流速度 (β),视速度随着视向角 θ 的变化。由公 式 1.1 可知,当临界视角 θ_{cri} 满足 sin $\theta_{cri} = \frac{1}{\Gamma}$ 时, β_{app} 取得极大值 $\sqrt{\Gamma^2 - 1}$ 。 根据观测到的视速度,可以限制洛伦兹因子 $\Gamma_{min} = \sqrt{1 + \beta_{app}^2}$ 和视向角 $\theta_{max} = 2 \arctan(\frac{1}{\beta_{app}})$ 。利用最小洛伦兹因子 Γ_{min} 和临界视角 θ_{cri} ,我们可以求 得多普勒因子的最小值 $\delta_{min} = \Gamma_{min} = \sqrt{1 + \beta_{app}^2}$ 。

对于一个内禀对称的双边喷流结构,观测者的视角分别为 θ 和 $\theta + \pi$ 。 那么根据方程 1.2,可以推导出喷流和反向喷流的流量比为: $R = \frac{\delta^n(\beta,\theta)}{\delta^n(\beta,\theta+\pi)} = \left(\frac{1+\beta\cos\theta}{1-\beta\cos\theta}\right)^n$ 。图 1.3 给出了几个不同洛伦兹因子情况下光度的多普勒增亮随视

图 1.2: 喷流视速度随视角的变化.

角的变化,在此假定公式 1.2 中 n = 3。我们可以看出,当 $\beta = 0.995 (\Gamma = 10)$ 时,增亮因子可以达到 10^4 。

图 1.3: 极坐标中光度的多普勒增亮随视角的变化. 其中角度的间隔为 10° (取自 Kellermann et al., 2007).

1.1.2.2 喷流的物理性质

尽管自射电星系 M 87 中观测到光学喷流 (Curtis, 1918) 已有近百年的历史, 然而迄今为止,对喷流的形成、加速和准直过程一直缺乏细致的理解。但是 可以肯定,喷流形成于黑洞附近 (约几十个 R_g 处,比如 Meier, 2009)。喷流的 形成带走了存贮在吸积盘和黑洞中的部分能量和角动量 (Blandford & Znajek, 1977; Blandford & Payne, 1982)。在喷流形成的过程中,对于提取能量的两种 主要方式,即通过 Blandford-Znajek 机制 (Blandford & Znajek, 1977) 提取黑洞 自转能和通过 Blandford-Payne 机制 (Blandford & Payne, 1982) 从吸积盘提取 能量,其相对重要性目前还不清楚。相对论性等离子体喷流可能是由正负电子 对主导 (Reynolds et al., 1996; Wardle et al., 1998),然而"正常"的等离子体 (电 子和质子)喷流并不能完全排除 (Celotti & Fabian, 1993)。喷流的加速和准直 过程可能在黑洞附近 (~ 10³ R_g 以内)的区域内完成,甚至有可能一直持续到几 个 pc 处 (Junor et al., 1999; Meier, 2009; Vlahakis & Königl, 2004)。喷流由于 受到磁场的作用而加速,此时喷流的坡印廷能量转化为动能,当然这种转化的 效率还不清楚。在距离黑洞 10³–10⁵ R_g 的区域,Sikora et al. (2005) 认为喷流仍 然由坡印廷能流主导。

沿着 Lobanov (2010) 的观点,我们把喷流分成三个区域来考虑:致密喷流 (核区,≲1pc)、pc尺度上的喷流 (~10pc) 和大尺度上 (~100pc) 的喷流。有 关更详细的区分,可以参考 Meier (2009)。

耀变体的喷流一般包括致密明亮的核和延展相对暗弱的喷流。喷流的核区 非常致密,高分辨率的 VLBI 观测仍然不能将其分解。对多数的源而言,喷流 可以被分解开,其中存在一些明亮的区域(喷流成份),这些喷流成份常表现 出视超光速运动,然而在与喷流运动垂直的方向,仍然没有分解。在一些临 近的活动星系核中,发现喷流有边缘增亮(edge-brightening)现象,比如 M87 (Krichbaum et al., 2006b)、Mrk501 (Giroletti et al., 2008)、Cygnus A (Bach et al., 2008)等。Ly et al. (2007)认为这可能是由于喷流的周围环绕着一个比它本 身宽得多"鞘"(sheath)形的磁场造成的。

喷流的核在射电波段由于同步自吸收作用表现为平谱,其观测到的位置 (光深 τ_{ν} 为1的位置)与喷流的起点是有偏移的,而且该偏移依赖于观测的频率。 光学薄的喷流成份则不受频率影响 (如图 1.4 所示)。如果我们用 r_{ν}^{core} 来表示核 观测到的位置到喷流起点的距离,那么 $r_{\nu}^{\text{core}} \propto \nu^{-1/k_{\text{r}}}$,这里 k_{r} 与电子能量分 布,磁场,以及粒子数密度有关。如果核存在自吸收并且处于粒子和磁场的能量均分状态,可以证明 $k_r = 1$ (Blandford & Konigl, 1979)。Lobanov (1998b) 利用测量到的位置偏移研究喷流致密核区及其周围吸收物质的物理性质。例如,利用多个频率测量到的偏移可以决定 k_r ,核区的磁场强度以及核离喷流起点的距离,并进而推算中心黑洞的质量。对自由–自由吸收的观测研究表明活动星系核中在亚 pc 尺度上存在一个围绕核心的、电离的吸收屏 (比如, Walker et al., 2000)。我们可以借助核的位置偏移,即通过 k_r 随着频率的变化来研究这些等离子气体的性质。这种变化可能是由喷流本身压力、密度梯度或由于周围气体的吸收造成的。精确测定 k_r 的变化可以用来研究这些吸收物质的尺度,粒子密度及温度等。

图 1.4: 依赖频率的喷流核位置偏移示意图 (取自 Kovalev et al., 2008).

存储在辐射粒子中和磁场中的能量的关系是活动星系核喷流的一个重要的物理性质。Burbidge (1959) 认为这两种能量的均分可以使扩展的射电瓣的总能量保持最小。最近的研究确实发现扩展的射电瓣处于或接近能量均分 (Croston et al., 2005)。VLBI 观测表明,喷流的核区亮温度可以到达 ~ 10¹² K 的逆康普顿极限,随着喷流成份远离核区,其亮温度迅速下降到 ~ 5 × 10¹⁰ K 的均分亮温度极限附近 (Lobanov et al., 2000; Homan et al., 2006)。这预示着核区中是粒子主导的,而喷流中等离子体是处于能量均分的状态。Homan et al. (2006) 认为核区中的粒子加速或重新注入会导致粒子能量的相对"过剩"。

pc 尺度上的喷流的典型特征包括喷流成份显著弯曲的运动轨迹,速度和流量密度的快速变化以及横向占主要优势的磁场 (Kellermann et al., 2004; Lister et al., 2009b; Camenzind, 2005)。VLBI 研究表明相对论性激波效应在 pc 尺度 非常显著。这些效应表现为强烈的偏振 (Ros et al., 2000)、同步辐射倒转频率

的快速演化 (Lobanov & Zensus, 1999) 以及静止的的喷流成份 (其离核的典型 距离为 1 pc) (Lister et al., 2009b; Kellermann et al., 2004)。Lobanov & Zensus (1999) 认为激波耗散迅速,因而有可能只在 \leq 100 pc 的尺度上起作用。在更 大的尺度上,等离子体不稳定性将左右喷流的结构和动力学 (比如, Lobanov & Zensus, 2001)。

喷流磁场 耀变体喷流的磁场结构可以用 VLBI 线偏振 (比如, Lister & Homan, 2005) 或圆偏振 (例如, Homan & Lister, 2006) 测量来研究。致密核区部分的 线偏振度通常 < 5%。造成核区低偏振度的原因可能有多种,比如混乱的 磁场 (Hughes, 2005),强的法拉第消偏振 (Zavala & Taylor, 2004),或者由于 磁场结构特征尺度远小于 VLBI 观测的分辨率而造成的波束消偏振 (beam depolarization)。

Lister & Homan (2005)的研究表明喷流中的线偏振度随着离核区的距离增加而增加,而偏振位置角在 BL Lac 天体中与喷流方向较一致。近来的观测表明沿着和垂直喷流方向线偏振度和法拉第旋转量均存在梯度。线偏振度朝喷流边缘和远离核区位置增加 (Asada et al., 2002; Gómez et al., 2008)。对此,一种可能的图景是在 spine/sheath 构型的两流体 (two-fluid)喷流中存在螺旋状的磁场。喷流内部是一个充满相对论性高能粒子的辐射区域 (spine),而环绕在它外面的是一个非辐射的充满非相对论性电子的磁性等离子体 (sheath)。在中心的 spine 中螺旋状磁场由于受到激波的挤压主要由横向 (垂直喷流方向)磁场主导,而外部 sheath 中磁场则是纵向 (沿着喷流方向)。

圆偏振已经在一些喷流中观测到,其偏振度一般 ≤ 0.5% (Homan & Lister, 2006)。圆偏振可以由内禀的同步辐射产生 (表明等离子中有一个很强的相对论性质子成份)或者由法拉第旋转引起线偏振向圆偏振转化 (正负电子对是等离子体的重要成份)。观测到圆偏振辐射的特征倾向于支持后一种理论 (Wardle et al., 1998; Homan & Lister, 2006)。喷流中的磁场强度一般可以通过同步辐射谱峰值处的信息 (Marscher, 1983) 获得或者是通过同步自吸收造成的不透明度求出 (Lobanov, 1998b)。

喷流运动学 在 pc 尺度上,观测表明耀变体的喷流结构经常发生变化,其中 部分原因可能是由于观测视角小和相对论性作用的增强和放大造成的。在一些 源中喷流"脊线"表现出极端弯曲的形态 (Savolainen et al., 2006)。 pc 尺度上观

测到的喷流扭曲的形态以及喷流成份的运动经常可以用螺旋状的几何来描述 (Steffen et al., 1995)。最近发现在一些源中,喷流位置角随着时间的变化而改 变,比如,NRAO150 (Agudo et al., 2007a),NRAO530 (Lu et al., 2011b)等。 这种变化似乎不仅仅是由于某单个成份的运动造成,而是整个内部喷流的整 体运动。喷流位置角的这种时变可能由于喷流的进动或旋转造成,或者反映了 Kelvin-Helmholtz 不稳定性的图案运动 (Hardee, 2003)。

喷流进动可能是由于单个的自旋黑洞 (e.g., Caproni et al., 2004) 或者双 黑洞系统 (e.g., Begelman et al., 1980; Lobanov & Roland, 2005; Roland et al., 2008; Britzen et al., 2010a) 造成的。在一些源中,射电和光学的光变曲线呈 准周期性,喷流成份表现出螺旋状的运动。这些现象支持进动的模型 (e.g., Kudryavtseva et al., 2011; Liu et al., 2010)。另外,一些源中喷流成份喷出角呈 现出规则的,周期为几年的变化,比如象 3C 273 (Abraham & Romero, 1999)。 Abraham & Romero (1999) 提出了一个简单的"弹道+进动"模型来解释类星体 3C 273 中喷流的运动。类似的模型也被提出并应用于其它的一些类星体,比 如, 3C 279 (Abraham & Carrara, 1998), 3C 345 (Caproni & Abraham, 2004), 和 OJ 287 (Tateyama & Kingham, 2004) 等。

另外一种对喷流位置角变化的解释是等离子体的不稳定性,其中最重要的 是 Kelvin-Helmholtz (KH) 不稳定性 (e.g., Hardee & Norman, 1988; Perucho et al., 2006; Lobanov & Zensus, 2001)。KH 不稳定性可以在喷流和周围介质的界 面层中由于速度剪切 (velocity shear) 引发。电流驱动的 MHD 扭曲不稳定性也 是一种可能 (e.g., Mizuno et al., 2009)。然而目前还不清楚观测到的喷流的弯 曲和摇摆由哪种不稳定性造成,也不清楚二者是否在不同的尺度上起作用。再 者,人们还不知道这些模型中原初扰动是如何产生的。然而,不稳定性可能只 影响大尺度上 (~100 pc) 喷流的形态和运动学特征,内部的喷流主要是由激波 主导的 (Lobanov & Zensus, 1999; Lobanov, 2010)。比如,耀变体 NRAO 530 的 喷流随时间的摇摆发生在内部几个 pc 的尺度上。类似于 NRAO 150 (Agudo et al., 2007a),不稳定性的增长在这样的区域可能受到磁场的削弱。

1.1.2.3 喷流辐射

根据现有的理解,活动星系核从射电到γ射线的宽波段的连续谱(尤其是 爆发的成份)产生于不同的位置,也就是说在不同波段,辐射是由空间上不同 的区域主导的。图 1.5 是一个 AGN 的基本结构以及不同波段的辐射区位置的 示意图,同时也给出了各不同结构成份的尺度。从辐射机制的角度,喷流的连续谱辐射是由非热的同步加速辐射和逆康普顿散射主导 (Unwin et al., 1997)。 在射电波段,同步加速辐射起主导作用。pc 尺度上射电辐射的时间和空间变化 均可通过高分辨率的 VLBI 观测手段进行直接的观测研究,比如,同步辐射谱 倒转频率的分布 (Lobanov, 1998a),同步自吸收 (Lobanov, 1998b)等。这为研 究这些变化与其它波段辐射的联系提供了唯一的手段。近来,随着费米 γ 射线 空间望远镜的发射,这方面的研究日益活跃起来 (Savolainen et al., 2010)。

研究表明,喷流的射电辐射表现出从几十年到几个小时等不同时间尺度的光变 (Wagner & Witzel, 1995; Asada et al., 2006; Savolainen & Kovalev, 2008)。长时间的光变或许与 AGN 核区大尺度的活动变化有关,而短时标的变化 (intra-day) 可能由星际介质散射造成。中等时间长度 (月-年)的光变一般认为来自于喷流核区的爆发或激波沿喷流向下游的传播 (Marscher & Gear, 1985)。Hovatta et al. (2008) 通过研究一个 AGN 样本 22 和 37 GHz 的总流量数 据发现射电爆发平均而言持续 2.5 年。这些爆发被认为和喷流中新成份的产生 相联系 (比如, Chatterjee et al., 2009)。

在光学波段,很多活动星系核表现出(准)周期性光变(比如,Fan et al., 2002),而在射电波段,数目则相对较少(Kelly et al., 2003; Kudryavtseva et al., 2011)。造成射电辐射准周期光变可能有不同的原因,比如喷流成份螺旋状的运动轨迹(Camenzind & Krockenberger, 1992),吸积盘不稳定性,激波沿着喷流的传播,或者喷流的进动(Stirling et al., 2003; Kudryavtseva et al., 2011)等。 另外可能的解释是这种光变由双黑洞系统引起。辐射的爆发是由于质量较小的黑洞穿过与质量较大黑洞相联系的吸积盘而引起(Ivanov et al., 1998)。然而,由于射电爆发的时间尺度较短,这类模型要求两黑洞的间距很小(< 10⁴ R_g, R_g为质量较大黑洞的引力半径),从而难以在大质量黑洞周围保持一个稳定吸积盘。

一般认为,相对论性喷流在电磁波谱的各个波段都产生很强的辐射, 硬X射线到 TeV 的高能波段一般认为是逆康普顿散射的结果 (Marscher et al., 2010)。然而,逆康普顿散射种子光子的来源依然不确定。可能的来源包括同 步辐射 (同步自康普顿散射)或者外部的辐射,比如,吸积盘辐射,X 射线冕, 宽线区,红外辐射的尘埃区以及宇宙微波背景辐射 (Ghisellini & Tavecchio, 2009)。再者,粒子的加速机制以及γ射线产生的具体地点 (相对中央黑洞),辐 射区域大小仍然没有定论。费米 γ 射线望远镜的投入使用为研究和理解射电 辐射和 γ 射线辐射的联系开创了一个新的时代。近期,一些切伦科夫望远镜 (比如, HESS, VERITAS) 的观测表明有些喷流的高能辐射可以达到 VHE 范 围,深刻影响着人们对于高能辐射区物理条件的理解。为了更好地理解喷流 的结构、动力学和其它波段的联系, VLBI 与多波段的协同观测是至关重要的 (Abdo et al., 2010; Marscher et al., 2008)。

图 1.5: AGN 辐射结构示意图。取自http://www.bu.edu/blazars/Images

1.2 天体脉泽

1.2.1 简介

脉泽 (microwave amplification by stimulated emission of radiation, maser) 辐射是激光在微波波段的等价现象。在实验室热平衡的环境下,辐射穿过介质时一般是被吸收,而不会被放大,因而脉泽不会出现。这可以通过介质对穿过它的辐射的吸收系数看出 (Lo, 2005)

$$\alpha_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) N_1 B_{12} \left(1 - \frac{N_2/g_2}{N_1/g_1}\right),\tag{1.4}$$

这里,N和g代表相应的高(2)、低(1)能态的粒子数目和统计权重,B₁₂为 爱因斯坦吸收系数, $\phi(\nu)$ 是谱线轮廓函数。在热平衡条件下,不同能级上的粒子数均符合温度为T的玻尔兹曼分布,

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp(-\frac{h\nu}{KT}).$$
(1.5)

对比式 1.4 和 1.5 可知,此时 α_{ν} 为正值,因而辐射是被吸收的。

然而在星际介质中,恒星周围的巨大空间内气体虽然密度很高 ($N_{\rm H_2} \ge 10^7/{\rm cm}^3$),但是相对地球上的环境来说,又是密度极低的,因而通常不是热平衡。在这种条件下,气体不能通过碰撞去激发,处于激发态的原子或分子只能辐射去激发,最终形成粒子数反转,即 $\frac{N_2/g_2}{N_1/g_1} > 1$ 。这意味吸收系数 α_{ν} 为负值并且辐射被它所穿过的介质放大了。在天文环境下,放大路径 L 通常很长 (天文单位到秒差距的尺度),因而放大因子 $e^{-\int \alpha_{\nu} dL}$ 很大,辐射放大的作用很显著。

对天体物理上很多令人感兴趣的区域来说,分子脉泽,比如 H₂O,OH, 以及 SiO 脉泽,是研究气体运动学以及磁场的重要探针。自从这些脉泽辐射发 现以来,对其的观测研究为理解这些分子气体所处的物理环境提供了重要的线 索。这些区域包括年轻或原恒星的边缘以及HII 区 (OH、H₂O、SiO 和 CH₃OH 脉泽)、恒星演化晚期红巨星和超巨星的周围壳层 (OH、H₂O 和 SiO 脉泽)、超 新星遗迹撞入相邻的分子云的激波区域 (1720 MHz OH 脉泽)、活动星系核中超 大质量黑洞附近的区域 (OH 和 H₂O 超脉泽) (Claussen, 2004; Lo, 2005)。由原 子的跃迁产生的谱线一般在红外甚至更短的波段,在射电波段,除了复合线之 外,原子的谱线很少。因而在本节,我们将主要考虑分子谱线,尤其是晚型星 周围的分子谱线。

脉泽辐射最先在天体中发现是 Weaver et al. (1965) 在几个电离氢区探测到 1665 MHz 的羟基主线。由于当时人们还不相信星际分子的存在,故而认为它 来自于某种未知的"Mysterium"。接下来的几年里陆续地发现了一系列的分子 谱线 (参见表 1.1)。由于这些辐射具有很高的有效温度和窄的谱线特征,因而 它们被认为是由受激微波辐射放大机制引起的。

河外脉泽源 (Lo, 2005) 的发现距今已有 30 多年的历史 (Whiteoak & Gardner, 1974; Churchwell et al., 1977)。人们意识到很多河外脉泽其内禀的辐射相对河内的脉泽源来说要强的多,而且多是与其寄主星系的活动星系核或喷流联系在一起。人们用"超脉泽"来描述这些具有非常高光度的脉泽辐射。当前已知的超脉泽有 OH, H₂O, H₂CO 和 CH。所有的河外 OH 脉泽几乎都与 ULIRGs (ultraluminous infrared galaxy) 相联系,这些星系被认为是星系并合的结果或者与其它星系有比较强的相互作用,处于剧烈的恒星形成期。普遍认为 OH 超脉泽的抽运机制是由于远红外辐射的结果 (Willett et al., 2011)。水超脉泽的一部分类似于银河系内水脉泽位于恒星形成区,而更强的

分子	中/英文名称	参考文献
OH	羟基/hydroxyl	Weaver et al. (1965)
NH_3	氨/Ammonia	Cheung et al. (1968)
$\rm H_2CO$	甲醛/formaldehyde	Snyder et al. (1969)
$\rm H_2O$	水/water	Cheung et al. (1969)
$\rm CH_3OH$	甲醇/methanol	Ball et al. (1970)
CH	次甲基/methine	Rydbeck et al. (1973)
SiO	一氧化硅/silicon monoxide	Snyder & Buhl (1974)
HCN	氢氰酸/hydrocyanic acid	Guilloteau et al. (1987)

表 1.1: 几种常见脉泽的首次发现

水脉泽则位于活动星系核中绕核的区域。河外 H₂O 脉泽的范例是 NGC 4258, 人们发现脉泽辐射起源于一个围绕中心超大质量黑洞旋转的开普勒气体盘 (Miyoshi et al., 1995)。这些水脉泽辐射的轨道运动可以被用来精确测定所 在河外星系的距离 (Herrnstein et al., 1999),进而可以精确地测定哈勃常数, 参见 https://safe.nrao.edu/wiki/bin/view/Main/MegamaserCosmologyProject。 目前已探知的最远的河外脉泽源位于红移 2.46 (Impellizzeri et al., 2008)。

1.2.2 恒星脉泽

一颗恒星中心在其核区的氢燃烧殆尽时便离开主序阶段,走向死亡之 旅。这时,壳层燃烧开始,它最终迈入渐进巨星支 (Asymptotic Giant Branch, AGB) 的阶段。这一阶段位于赫罗图的右上角,是一个低温度和高光度的区域。 取决于不同的主序质量,其中心的核合成有不同的结局。有关中小质量主序后 的演化,可参阅 Habing (1996)。大质量 (> $8M_{\odot}$) 恒星的演化为可参考 Chiosi & Maeder (1986)。

在壳层燃烧阶段,晚型星由于星风的作用会有很高的质量损失率。对于 超巨星而言,质量损失或许可以达到 $10^{-4} M_{\odot}$ /yr (Stanek et al., 1995)。由于质 量损失,喷射出的气体或尘埃会在恒星周围形成一个拱星包层 (circumstellar envelope, CSE)。中心星脉动膨胀的过程中,激波会把气体物质推向外部温度 较低的区域,从而可以形成尘埃颗粒,遮蔽光学波段的观测。在尘埃层的外 部,辐射压会加速星风的向外运动。目前对晚型星所已知的大部分知识来自于 对星周分子谱线和尘埃的连续谱的观测研究。高分辨率红外干涉仪的出现促进 了对该尘埃包层以及中心恒星的认知 (比如, Monnier et al., 2004; Chiavassa et al., 2010)。CSE 的化学复杂度由碳元素 (C) 跟氧元素 (O) 的比值主导: M 型富 氧星, C/O<1; S 型星, C/O~1; C 型富碳星, C/O>1。

拱星脉泽 (OH, H₂O, SiO) 的高分辨率观测是研究 CSE 的重要手段。由 于不同脉泽的激发需要不同的条件,因而通过研究这些脉泽可以探知 CSE 不 同区域。图 1.6 给出了一个 CSE 各个壳层的洋葱模型示意图。脉泽辐射随着晚 型星的脉动而不断变化,多历元的观测可以研究脉泽辐射区的气体动力学和 物理条件与恒星相位的关系。表 1.2 总结了最常见的几种拱星脉泽的主要性质 (Kemball, 2007)。按照最基本的拱星脉泽模型,表 1.2 中的几种脉泽是以中央 恒星为中心同心分布,而半径大致地与跃迁激发温度相关。

图 1.6: CSE 中恒星脉泽示意图。左图: CSE 内部区域,右图: CSE 外部区域。 引自 Reid (2002).

除了探知拱星包层中动力学和物理环境之外,脉泽也是研究磁场很好的探针。主序后恒星周围的磁场的大部分信息来自于脉泽的偏振观测研究。 Szymczak et al. (1998)发现在离恒星较远的 OH 脉泽辐射区域存在 mG 量级 的有序磁场。在离恒星较近的水脉泽的辐射区,可能存在几百 mG 的磁场 (Vlemmings et al., 2005)。在更靠近中心几个恒星半径的 SiO 辐射区,磁场 的强度可能会达到几个 G (Vlemmings et al., 2011)。同时, Vlemmings et al. (2011)认为主序后恒星周围存在着稳定的、大尺度 (几个到~1400 AU)的磁场。

	SiO	$\mathbf{H}_{2}\mathbf{O}$	ОН
跃迁	$v = 0, 1, 2, 3,; \Delta J = 1$	$6_{16} - 5_{23}$	$^{2}\Pi_{3/2}, J = 3/2, \Delta F = 0, 1$
半径(AU)	$\sim 3 - 6$	~ 100	~ 1000
氢原子数密度(cm ⁻³)	5×10^{10}	10^{8}	10^{7}
温度(K)	1500	750	450
抽运机制	辐射/碰撞	碰撞	辐射

表 1.2: 晚型星中常见的脉泽

1.2.2.1 SiO

SiO 脉泽通常存在于主序后星,主要是富氧型的 Mira 变星。它们也存在 于半规则及不规则变星,超巨星,S型星,一些原行星状星云及恒星形成区 中。到目前,很多条 SiO 脉泽已经被探测到,其中高J跃迁可以到J = 10 - 9, 振动跃迁可以达到v = 4。当然研究最多、最深入的仍是v = 1, 2J = 1 - 0(43 GHz) 和v = 1, J = 2 - 1 (86 GHz)的跃迁。高分辨率观测表明 SiO 脉泽斑 状辐射总体上在距中心星几个恒星半径的区域呈类环状的分布 (Diamond et al., 1994; Reid & Menten, 2007)。偏振观测显示脉泽斑是沿着切向线偏振的,很可 能脉泽是在 CSE 的内部沿着切向放大而形成。

SiO 脉泽的抽运机制仍然是当前的一个热门研究课题。脉泽到底是碰撞激发还是辐射激发至今仍存争论,一些研究结果支持碰撞激发 (Lockett & Elitzur, 1992; Miyoshi et al., 1994),而另有一些结果支持辐射抽运 (Bujarrabal, 1994a,b)。但无论那种激发,由于第一级振动激发态比基态高 1800 K,因而所有的模型都要求 SiO 脉泽产生于恒星的光球层附近。Humphreys et al. (2002)考虑了穿越脉泽区的激波来解释脉泽的时变,然而主要的抽运机制问题依旧没有解决。辐射抽运很难解释相同位置处 v = 1 和 v = 2, J = 1 - 0 的跃迁,另一方面碰撞抽运在解释脉泽强度与恒星红外辐射的相关性方面也存在困难。为了验证 SiO 脉泽的抽运机制,观测研究不同跃迁的空间分布是非常重要的。

得益于 VLBI 技术的发展, SiO 脉泽的运动学的高分辨率研究是近来的一个热点 (例如, Chen & Shen, 2008; Gonidakis et al., 2010, 及相关文献)。比较细致的研究要数对 Mira 变星 TX Cam 的 SiO 脉泽多历元的监测研究 (TX Cam "movie" Diamond & Kemball, 2003)。Diamond & Kemball (2003)的观测显示 SiO 脉泽运动主要由向外膨胀主导,在总体上出现速度随脉动周期的锯齿状轮

廓,但局部会受到激波的影响。最新版的"movie" (Gonidakis et al., 2010) 涵盖 了 TX Cam 的 2 个脉动周期,但与之前的整体膨胀不同,第二个周期内壳层也 显示出收缩运动 (图 1.7)。同时,他们的研究还发现 SiO 脉泽的平均寿命大约 为 150-200 天,其活动性与恒星脉动表现出很强的相关性,但有约 10 % 脉动周 期的延迟。

图 1.7: TX Cam 中 SiO 脉泽壳层平均半径与恒星相位 (ϕ) 的关系 (Gonidakis et al., 2010)。SiO 脉泽壳层在第一个周期经历膨胀。当 $\phi = 1.5$ 时,新的壳层形成并经历膨胀和收缩。

不同跃迁的空间相对分布是研究抽运机制的重要手段。Miyoshi et al. (1994) 最先比较了 VY Cma 和 W Hydrae 中 SiO 谱线 v = 1, 2 J = 1 - 0 跃迁的 分布,他们的观测表明两条跃迁的空间分布是重合的,因而支持碰撞抽运的模型。Desmurs et al. (2000) 更高分辨率的观测表明,尽管两个跃迁的整体分布相 似,但几乎从来不重合。他们发现 v = 2 的跃迁要更靠近中心星 (1–2 mas),但由于早期观测的分辨率不够高,因而不能够观测到。有趣的是,Soria-Ruiz et al. (2004)发现一些 v = 2 的辐射斑块以某种方式绕着 v = 1 的辐射运动,却不重合。SiO v = 1 J = 2 - 1 (86 GHz)的跃迁也是很强的脉泽辐射。尽管由于毫 米波 VLBI 的困难 (参见第 三 章),该跃迁的数据仍然相对较少,但比较 v = 1 J = 1 - 0, J = 2 - 1的跃迁已经可以对抽运模型进行限制 (比如,Phillips et al., 2003)。

1.2.2.2 H₂O和OH脉泽

H₂O 和 OH 脉泽一般处于尘埃层之外的区域 (图 1.6)。作用在尘埃颗粒 上中心恒星的辐射压会推动星风在这一区域向外加速运动。Yates & Cohen (1994) 观测发现水脉泽辐射区的大小随着质量损失率的增加而增加,辐射区的 结构成团块状,并常偏离球对称的分布,但运动方向仍以径向远离中心星为 主。Murakawa et al. (2003) 研究了 VX Sgr 中水脉泽,他们认为用一个双圆锥 体的外流模型可以描述水脉泽的分布和运动学。

在一些所谓 "water fountain" 的源中观测到 H₂O 脉泽形成高速 (\gtrsim 100 km/s)、准直、进动的双极喷流结构 (Likkel & Morris, 1988)。这些源处于 AGB 星向 行星状星云演化的过渡阶段,原行星状星云 (pre-planetary nebulae (PPNs))。这些水脉泽喷流的速度远高于 1612 MHz OH 脉泽示踪的 Mira 变星和 OH/IR 星 CSE 的典型膨胀速度 (10–25 km/s),并且具有很短 (\lesssim 100 年)的动力学年龄 (比如, Day et al., 2010)。研究这些高速的分子气体喷流可以帮助人们理解 AGB 星到行星状星云的演化过程。但由于 PPNs 阶段非常短暂,因而目前发现的这 类源只有 12 个¹ (Suárez et al., 2008)。

观测发现晚型星拱星包层内的 OH 脉泽有两类,一类为 1665 和 1667 MHz 的主线脉泽。这一类脉泽,比如在红巨星中,处于离中心星大约 10¹⁵–10¹⁶ cm 的位置,常与 H₂O 脉泽相联系。另一类为 1612 MHz 的辅线脉泽,处于大约 10¹⁶ cm、气体和尘埃自由膨胀的区域。该类脉泽的主要特征是其轮廓具有双峰 结构,通常被认为是分别来自一个膨胀的壳层中接近和远离观测者的辐射。

 $^{^{1}} http://www.cosmosmagazine.com/news/4051/rare-stellar-water-fountain-discovered$

第二章 VLBI 基本原理

我们在本章简要介绍射电干涉测量的基本原理。关于射电干涉仪和 VLBI 的更多更详细的讨论,读者可参阅 Thompson et al. (2001); Zensus et al. (1995)。由于本文中涉及的连续谱和谱线 VLBI 观测的数据校准与自校准近来已有讨论 (蔡宏兵, 2007; 陈曦, 2007),因而作者在此不再进行详细的论述。

对于射电干涉测量,我们可以用一个如图 2.1 所示的二元干涉仪来说明。 我们假设辐射满足远场条件,并且是空间非相干的。2 个望远镜分布在不同的 地方,其基线矢量为 b,并且同时指向某一射电源方向,用单位矢量 s 来表示。 射电源发射的信号被两个天线收集,焦点处的电场信号通过馈源并最终会转换 为电压信号,再送给放大器进行放大。接收机的电压信号 $V_1(t)$ 和 $V_2(t)$ 分别送 给相关机进行相关处理,即电压相乘和时间积分 (我们暂不考虑变频)。可是, 由于同一波前到达两个望远镜的时间存在几何延迟 $\tau_g = \frac{\vec{b}\cdot\vec{s}}{c}$,相关之前,我们 应该对它进行改正。我们注意到,地球自转造成 \vec{b} 或 s 缓慢变化,从而 τ_g 也会 随着时间缓慢变化。送入相关处理机的两个电压信号可以表示为

$$V_{1} = v_{1}cos2\pi\nu(t - \tau_{g})$$

$$V_{2} = v_{2}cos2\pi\nu(t).$$
(2.1)

相关机的输出可以表示为

(-- () -- ())

 $\simeq v_1 v_2 cos 2\pi \nu \tau_q.$

a (.

$$r(\tau_g) = \langle V_1(t)V_2(t)\rangle \tag{2.2}$$

这里的 〈〉 表示时间积分。相关处理机输出的是一个类正弦曲线 (τ_g 不是线 性变化) 的震荡信号,其幅度正比于两个天线接收信号的功率。

我们用 $I(\vec{s})$ 来表征射电源在某一频率 ν 处, \vec{s} 方向的亮度。在 $\Delta \nu$ 的带宽范围内,天线在 \vec{s} 方向从 $d\Omega$ 立体角内接收到信号的功率可以表示为 $A(\vec{s})I(\vec{s})\Delta\nu d\Omega$,这里, $A(\vec{s})$ 代表天线在 \vec{s} 方向的有效接收面积。由于相关机输出正比于天线接收到的功率,相关机由于 $d\Omega$ 立体角内辐射所产生的输出为 (忽略常数项部分)

$$dr = A(\vec{s})I(\vec{s})\Delta\nu d\Omega cos 2\pi\nu\tau_g. \tag{2.3}$$

图 2.1: 一个二元干涉仪示意图

相关机的总的输出可以由对整个天空积分得到

$$r = \Delta \nu \int_{S} A(\vec{s}) I(\vec{s}) \cos(\frac{2\pi\nu\vec{b}\cdot\vec{s}}{c}) d\Omega.$$
(2.4)

由于天线主波束的限制,干涉仪只能对很小的立体角范围成图。通常为了 方便,把*s*写作*s* = *s*₀ + *d*。图像的中心方向*s*₀是固定的,并被称作相位中心。 把这个表达式带入 2.4 式,可以得到

$$r = \Delta\nu\cos(\frac{2\pi\nu\vec{b}\cdot\vec{s_0}}{c})\int_S A(\vec{\sigma})I(\vec{\sigma})\cos(\frac{2\pi\nu\vec{b}\cdot\vec{\sigma}}{c})d\Omega -\Delta\nu\sin(\frac{2\pi\nu\vec{b}\cdot\vec{s_0}}{c})\int_S A(\vec{\sigma})I(\vec{\sigma})\sin(\frac{2\pi\nu\vec{b}\cdot\vec{\sigma}}{c})d\Omega.$$
(2.5)

此时有必要引入复可见度 V, 其定义为

$$V \equiv |V| e^{i\phi_V} = \int_S A_N(\vec{\sigma}) I(\vec{\sigma}) e^{\frac{-2\pi i\nu\vec{b}.\vec{\sigma}}{c}} d\Omega.$$
(2.6)

这里 A_N 为归一化的天线响应, $A_N = \frac{A(\vec{\sigma})}{A_0}$, A_0 为波束中心的响应。把复可见 度分别按实部和虚部来考虑,可得到

$$A_{0}|V|\cos\phi_{V} = \int_{S} A(\vec{\sigma})I(\vec{\sigma})\cos\frac{2\pi\nu\vec{b}\cdot\vec{\sigma}}{c}d\Omega$$

$$A_{0}|V|\sin\phi_{V} = -\int_{S} A(\vec{\sigma})I(\vec{\sigma})\sin\frac{2\pi\nu\vec{b}\cdot\vec{\sigma}}{c}d\Omega.$$
(2.7)

把 2.7 式和 2.5 式结合,可得

$$r = A_0 \Delta \nu |V| \cos\left(\frac{2\pi\nu \vec{b} \cdot \vec{s_0}}{c} - \phi_V\right),\tag{2.8}$$

由上式可知,在没有延迟跟踪的情况下,可见度受到一定的调制(其频率决定于频率*v*和基线*i*,幅度取决于天线响应*A*₀)。

从 2.6 式可知,如果我们在 <u>*v*</u> 足够宽的范围内测量可见度,就可以通过 该式的逆变换得到射电源的亮度分布。为此,我们为可见度和射电源亮度分布 设定坐标系,即可见度平面 (*u*,*v*) (垂直 *s*₀ 的方向)和对应的图像平面 (*l*,*m*),*u* 和 *v* 分别以观测的中心频率所对应的波长为单位,指向东和北的方向。<u>*v*</u> *v d* 基线矢量在可见度平面内的分量。如果成图范围限制在很小的范围内,可以证 明

$$A(l,m)I(l,m) = \iint_{-\infty}^{\infty} V(u,v)e^{2\pi i(ul+vm)}dudv.$$
(2.9)

第三章 毫米波VLBI 的发展与展望

3.1 引言

1931 年,Jansky 用当时自己建造的无线电天线,首次记录到宇宙空间的 射电辐射 (Jansky, 1933; Reber, 1940),为天文学研究打开了一个全新的观测窗 口,标志着射电天文学的诞生。射电天文学一直对发现意外天文现象做着杰出 的贡献,最值得一提的是 20 世纪 60 年代四大天文发现:类星体、星际有机分 子、宇宙微波背景辐射和脉冲星。目前,人类拥有了从射电到γ射线涵盖整个 电磁波谱的观测设备,已经进入全波段天文学时代。

射电天文学是天文学与无线电科学相结合的科学,射电望远镜发展的每 一次长足进步总会促进射电天文研究的新进展。射电望远镜的分辨本领和它 的接收天线的直径呈正比,然而单靠增大天线口径有许多实际困难,于是射 电天文学家转向干涉技术。干涉测量 (Interferometry) 的原理是利用电磁波的 干涉精确测定细微的角的大小及其变化,它在天文学中的应用可以追溯到 A. A. Michelson 等在光学领域中的开创性工作 (Michelson & Pease, 1921)。1962 年,英国天文学家 Ryle 建成世界上第一台综合孔径射电望远镜 (Ryle, 1962), 以相对小的多的天线取得极大口径单天线所取得的效果,也因此与脉冲星发 现者 Hewish 共享了 1974 年的诺贝尔物理学奖。射电干涉测量从 20 世纪 50 年 代的二元干涉仪发展到 70 年代的复杂多元综合孔径阵列,再到甚长基线干涉 (VLBI),观测波长也从米波到厘米波,再向毫米、亚毫米波的短波不断发展, 经历了一个追求高分辨率和高灵敏度的过程。

3.2 射电干涉测量发展回顾

干涉测量在射电天文学中的应用随着第二次世界大战的结束而迅速发展起来,至今已有70余年的历史。早期代表性的仪器有澳大利亚悉尼海岸干涉仪(Pawsey et al., 1946; McCready et al., 1947)、英国剑桥双天线干涉仪(Ryle et al., 1950)、以及其后的相位切换干涉仪(Ryle, 1952)、二维米波巡天干涉仪(Ryle & Hewish, 1955; Mills et al., 1958)、厘米波成图干涉仪(Ryle et al., 1959; Mills et al., 1963),地球自转孔径综合(Ryle, 1962)等。综合孔径射电望远镜的

基本原理就是将相隔很远的两个天线接收到的同一天体的两束射电波进行干涉,其结果就等效于一架口径相当于两地之间距离的单孔径射电望远镜,极大地提高了射电望远镜的分辨本领。目前在世界各地广为使用的大型综合孔径望远镜主要有美国的甚大阵 (VLA, Thompson et al., 1980)、英国的多天线微波连接干涉阵 (MERLINE, Davies et al., 1980)、荷兰的 (WSRT, Baars et al., 1973)、南半球澳大利亚的致密天线阵 (ATCA, Frater et al., 1992)等。中国密云米 波综合孔径望远镜 (MSRT, Beijing Observatory Metre-Wave Radio Astronomy Group, 1986) 也属于这类综合孔径阵。工作在毫米波段的天线阵列主要有美国的 Hat Creek、Owens Valley,和位于夏威夷的亚毫米波阵 (SMA, Ho et al., 2004),日本的 Nobeyama,法国的 Plateau de Bure,以及正在建造的位于智利的大型毫米波天线阵 ALMA。

天文望远镜的分辨率 θ (单位 rad,其数值越小表明分清细节的能力越强) 依赖于望远镜的口径 D 和观测波长 λ ,其关系可简单地表示为 $\theta \sim \frac{\lambda}{D}$ 。为了提 高干涉仪的分辨率,在基线两端使用高稳定度的独立本振和数据记录设备,最 后把观测数据送到相关中心进行相关,从而达到信号相干的目的,即 VLBI, 它能提供目前天文观测中最高的空间分辨本领 (Kellermann & Moran, 2001)。 VLBI 与综合孔径射电望远镜的最大不同在于它不需要把分散在数千公里之外 的射电望远镜实时地连接在一起,而是让射电望远镜将观测信号独立地记录在 观测台站的磁带或磁盘上,观测完成后再把观测数据送到相关中心进行相关, 达到信号干涉的目的。这样就可以获得相当于 (甚至超过)地球直径量级的射电 望远镜分辨本领,从而将分辨率提高了几个量级。在厘米波段,可以获得的角 分辨率约为毫角秒 (milliarcsecond, mas)量级。

1967年,Broten et al. 在对活动星系核的观测中第一次记录到 VLBI 连续 谱干涉条纹。Moran et al. 也于 1967年在对 OH 脉泽的谱线观测中首次记录 到条纹。对天体物理学研究而言,目的是研究射电源的致密结构,因而要求 从 VLBI 测量到的可见度构造射电源的亮度分布,二者是一对傅立叶变换对。 由于测量到的可见度是离散采样的,且存在误差,因而需要洁化图像和校正 观测到的可见度。基于此,20世纪 70年代发展了一批洁化图像的算法(比如: CLEAN 算法,Högbom,1974)和校正方法。对 VLBI 来说,相位的校正是困难 的,早期 VLBI 观测面临的问题是由于仪器和大气的影响,测量到的相位受到 严重的"污染"而得不到校准,因此曾一度被认为不能真正用于成像。为了解 决这个问题,Rogers等在前人研究基础上重新发现了闭合相位关系并用于数 据分析 (Rogers et al., 1974)。利用这项技术人们很快发展出混合成图 (hybrid mapping) 方法 (Baldwin & Warner, 1978; Readhead & Wilkinson, 1978),例如 最常用的自校准方法 (Schwab, 1980),从而得到射电源的射电亮度分布图。 VLBI 图像重建问题可参考Pearson & Readhead (1984)。

目前,具有代表性的用于天文观测研究的VLBI阵列有美国的 VLBA (由 10 个 25 米天线组成),以欧洲为主的 EVN (位于中国上海佘山和乌鲁木齐南山的 25 米射电望远镜也是其正式会员),以澳大利亚为主的 LBA,以及日本主导 的空间 VLBI 计划 (VSOP (Hirabayashi et al., 1998),已经于 2003 年停止观测)。 自从 1967 年 Broten et al. 首次记录到干涉条纹以来,VLBI 在活动星系核的研 究领域取得了很多令人瞩目的成就。通过 VLBI 观测,人们逐步揭示了活动星 系核中央能量通过喷流不断地输送到外部射电瓣的物理图像。

3.3 毫米波 VLBI

3.3.1 毫米波 VLBI 观测研究的优势

由前述原理可以理解,VLBI 的角分辨率可以从两个方面得到提高,一是 增加基线的长度,二是提高观测的频率。前者催生了空间 VLBI (利用空间射电 望远镜和地面的射电望远镜联合干涉观测,例如 VSOP) 的出现,而后者则是 人们发展毫米波 VLBI (mm-VLBI,观测频率在~80 GHz 以上) 的动力。毫米 波 VLBI 观测研究的优势如下。

• 更高的分辨率

相比较于地面或空间厘米波 VLBI (例如在 6 厘米, VSOP (Hirabayashi et al., 1998) 的角分辨率为 0.2–0.3 mas), mm-VLBI 提供了更高的角分辨。比如,在 3.5 毫米 (86 GHz), 全球 mm-VLBI 阵的最高角分辨率可达 50 µas (microarcsecond)。

• 同步辐射自吸收作用弱

相比较 厘米波 VLBI,毫米波 VLBI 能够看的更"深入"。一般认为,活动 星系核中的射电辐射是由于相对论性电子和磁场相互作用产生的同步加 速辐射,由于自吸收的作用,其内层区域在厘米波段是看不到的。随着 观测波长的减小,光深也随之减小,这为mm-VLBI 研究活动星系核的中 央引擎提供了独特的优势。
• 受等离子体影响小

毫米波 VLBI 能够减少银河系中星际介质的散射作用。在银道面附近,一 个点源经过散射后其散射角的大小正比于波长的平方。因此对银河系中 心射电源 Sgr A* 和低银纬的射电源 (比如射电星系 Cygnus A) 的观测会受 到等离子体散射的影响。在短毫米波段,散射效应不再明显。对银河系 中心超大质量黑洞候选体 Sgr A*,毫米波甚至亚毫米波 VLBI 对于限定 其大小和辐射模型的建立尤为关键。

观测表明,AGN 的射电辐射是偏振的,因此可以利用 VLBI 偏振观测对 其磁场进行研究。偏振辐射穿过等离子体时偏振位置角方向会发生改变, 即法拉第旋转。法拉第旋转也与波长的平方成正比关系。因此,VLBI 偏 振研究在低频波段受到银河系内以及 AGN 寄主星系内星际介质的法拉第 消偏振的影响大的多.

• 新的谱线观测窗口

毫米波 VLBI 也同时打开了对一些新的分子谱线 (脉泽) 源进行高分辨 率观测的窗口,比如,甲醇脉泽的 84.521,95.169 GHz 谱线,HCO+的 89.189 GHz 谱线,SiO (J = 2-1)在 86.243 GHz 的谱线,HCN 的88.632 GHz 谱线,HNC 的 90.664 GHz 谱线,CO 的 109.782 GHz (C¹⁸O)、110.201 GHz (¹³CO)、112.359 GHz (C¹⁷O) 的谱线、以及在 129 GHz 的 SiO (v = 1, J = 3-2)和 230 GHz CO (J = 2-1)谱线等。

3.3.2 毫米波 VLBI 观测研究的困难

对 mm-VLBI 观测研究而言,其主要困难之一是受到对流层中的水蒸气 分子和氧分子的共振吸收线的影响 (水蒸气: 22 和 183 GHz 附近,氧分子: 60 和 118 GHz 附近)。大气吸收既减弱了信号强度,又增加了系统的噪声温度。 受到大气可降水分变化的影响,吸收随时间而变化,因而不容易被全部改正 掉。同时,可降水分的变化会引起大气折射率的变化,造成残余延迟的起伏, 增加相位噪声,使得大气的相干时间一般只有 10 余秒左右 (3 mm, Rogers et al., 1995)。除了在上述几条吸收线附近,这些影响随频率增加而逐渐增强。另 外,参与观测的天线在毫米波段较低的孔径效率或者本身较小的口径,使得 mm-VLBI 的探测灵敏度受到相应的限制。对射电源来说,一大部分源在毫米 波段的辐射相对厘米波段变弱 (陡谱或倒转谱)。上述这些因素导致在毫米波段 可以探测并能够最终成图的射电源数目相对于在低频波段要少的多 (Lee et al., 2008)。

3.3.3 毫米波 VLBI 的发展

自上世纪 80 年代初 Readhead et al. (1983) 证明了在 3 毫米进行 VLBI 观测 技术上的可行性以来,由于在天线建造 (天线面精度)和低噪声前端方面的技术 进步,以及相应的处于高海拔和干燥的气候环境条件下在高频上进行观测的天 线数目的增加,并伴随着高速数据记录系统的迅速发展,mm-VLBI 取得了很 大的进展。目前,在 3 mm 波段,mm-VLBI 能够定期进行观测并得到高质量的 图像,其典型的分辨率为 50 ~ 70 µas (Lee et al., 2008; Rantakyro et al., 1998)。 在更短的波段上,VLBI 观测目前还在实验观测阶段。早期的 2 mm (Greve et al., 2002; Krichbaum et al., 2002; Doeleman et al., 2002) 和 1 mm (Padin et al., 1990; Greve et al., 1995; Krichbaum et al., 1997, 1998) 的实验性观测验证了技术 上的可行性,并且确认了活动星系核中存在足够致密的结构。2003 年,科学家 们在横跨大西洋的基线上成功地探测到 1 mm VLBI 的条纹,获得了创世界纪 录的 34 µas 的分辨率 (Krichbaum et al., 2004; Doeleman et al., 2005)。在东亚, 3 mm-VLBI 首次在韩国的 TRAO 射电天文台和日本的 Nobeyama 射电天文台 (NRO) 间的基线上进行了成功观测 (Shibata et al., 2004)。

位于中国青海德令哈的毫米波天线具有在3mm观测的能力。目前科学家 们正对该站配置 VLBI 设备,mm-VLBI 观测的可行性、以及现有设备的升级、 改造进行规划。

3.3.3.1 3 mm-VLBI

3mm-VLBI 观测始于1981 年。早期 (1981–1987) 的试验主要致力于发现适 合毫米波观测的射电源,其间由于基线的限制 (3–4 个),可以进行成图研究的 非常有限 (Wright, 1988)。从 1988 年,mm-VLBI 在证明了其技术上可行性的 大约 5 年之后,常规的 3mm VLBI 观测才得以组织和开展。在 20 世纪 90 年代 前期,曾组织了专门的全球 3mm-VLBI 阵列进行观测,参加的望远镜为 3 到 7 个。

CMVA CMVA (The Coordinated Millimeter VLBI Array, 1995–2002) 的正 式建立在促成更大规模的全球 3 mm-VLBI 观测的同时,使得全世界的研究者

能通过提交观测申请得到观测机会。在 1997 年初,第一个 VLBA 台站加入到 CMVA 组织的全球 mm-VLBI 联测。随着更多的 VLBA 天线的加入, CMVA 的 观测精度得到不断提高。但令人遗憾的是,在 2002 年, CMVA 由于资金的问题停止运作。这一时期的全球 mm-VLBI 观测,以其约 50 μas 的角分辨率,揭示了许多活动星系核中存在致密的核和单边喷流的结构,而且离核区越近的,喷流表现得越弯曲 (Rantakyro et al., 1998; Baath et al., 1992)。

GMVA 在 CMVA 停止组织观测的同时,位于法国的 Plateau de Bure 毫 米波干涉仪可以作为一个相位阵加入 mm-VLBI 观测。作为 CMVA 的继任 者,GMVA (The Global Millimeter VLBI Array, 2003-今)于 2003 年开始运 转,目前参加观测的有美国 VLBA 的 8 个天线和欧洲的射电望远镜,包括 德国的 Effelsberg、西班牙的 Pico Veleta、法国的 Plateau de Bure、瑞典的 Onsala 和芬兰的 Metsähovi。其最高分辨率为 50-70 μ as,最高基线灵敏度为 38 mJy (7 σ ,假设相干时间为 20 s,数据积分时间 100 s,采样速率 512 Mbps (2 bits/sample))。相应的成图灵敏度为 0.85 mJy (7 σ ,假定观测时间为 12 h, 工作周期 (duty cycle)为 0.5),在这种条件下,可以获得高动态范围 (\geq 500 : 1) 的射电源的数目超过了 100个(Agudo et al., 2007b)。目前,全球 mm-VLBI 观 测申请每年有两次,建议书提交的截至日期为每年的 2 月 1 日和 10 月 1 日 (http://www.mpifr.de-bonn.mpg.de/div/vlbi/globalmm/index.html)。

3.3.3.2 2 mm 和 1 mm VLBI

尽管目前 VLBI 在短毫米波 (2mm和1mm) 上还处于试验阶段,但试验已 经证明其技术上的可行性。其中在 2mm,一个很大的成功是在长达 4.2 Gλ 的 跨大西洋的基线上 (西班牙 Pico Veleta 和美国 Heinrich-Hertz Telescope) 明确探 测到 3 个类星体: NRAO 150, 1633+382 以及 3C 279 (Krichbaum et al., 2002)。

在 1 mm, Padin et al. (1990) 等人经过尝试,于 1989 年首次在对 3C 273 的观测中在 845 km 基线上探测到条纹。Greve et al. (1995) 于1994 年在 IRAM 的 Pico Veleta 30 米望远镜和 Plateau de Bure 的一个 15 米天线间的 1150 公里 长的基线上,观测到 3C 273, 3C 279 和 PKS 2145+067。Krichbaum et al. (1997) 的试验近一步验证了 VLBI 在 1 毫米上的可行性,并探测到 6 个致密射电源。 最近, Doeleman et al. (2008) 在 1 毫米成功地对 Sgr A* 进行了观测,发现其

内禀的角大小只有 37 μ as,相当于 3.7 个 Schwarzschild 半径(400 万太阳质量黑 洞)。

这一系列的试验得出了一些重要的结论: (1) 很大一部分已知的 cm-VLBI 射电源都极其致密,因而需要在短毫米波段进行 VLBI 观测研究。(2) VLBI 所 观测到的喷流可以追踪到亚秒差距的尺度上,并且离核区越近,喷流弯曲越明 显。(3) 近期通过在对银河系中心射电源 Sgr A* 的观测,发现在短毫米波短已 经可以测量到其辐射区的内禀大小,结合 VLBI 观测对其质量的限制 (Reid & Brunthaler, 2004), mm-VLBI 观测为超大质量黑洞的存在提供了强有力的证据 (Bower et al., 2004; Doeleman et al., 2008; Shen et al., 2005)。

3.3.4 毫米波 VLBI 对活动星系核研究的意义

虽然活动星系核的发现已经有 40 余年的时间,但是至今它仍然是宇宙中 最吸引人的天体。直到今天,与 AGN 相联系的一些本质问题仍然悬而未决。 对超大质量黑洞的物质吸积以及相对论性喷流,包括喷流的形成、加速及准直 等过程依然缺乏细致的理解。通过 mm-VLBI 的高分辨率来研究内部区域喷流 随时间的演化为理解这些过程提供了很好的机会。

在毫米波段进行 VLBI 观测,由于很高的分辨率,能够对非常靠近 AGN 核的区域进行成图研究。这些区域被认为是射电喷流产生的区域。因此,在尽 可能短的波段进行高分辨率的观测对于研究活动星系核的本质是非常重要的。 而这些区域由于在厘米波段是光学厚的,因此 cm-VLBI 不管有多么高的分辨 率和动态范围,都是无能为力的。另外,AGN 在毫米波段的强烈活动性(流量 变化和喷流结构变化)也是促使人们探索在毫米波上进行 VLBI 观测的又一动 力。例如,利用 mm-VLBI,可以在相对高的频率和相对早的时间探测喷流成 分的变化,从而可以探究流量(从射电波段到 γ-ray)的爆发与新成分产生的关 系。利用 mm-VLBI 的图像,可以在距离核更近的区域追踪喷流的弯曲,在很 多活动星系核中,人们发现喷流弯曲的程度会随着距离核的距离的减少而加剧 (Rantakyro et al., 1998)。

为进一步增加适合未来 3mm-VLBI 观测研究的样本数目, Lee et al. (2008) 对一个大样本的致密射电源 (127个)进行了 3mm-VLBI 的巡天观测,在成图 灵敏度好于 10 mJy/beam 的水平,最终得到了 109 个射电源的图像,将可以在 3mm 成像的射电源的数目增加近 5 倍。这些结果表明,在亚毫角秒的尺度上, 类星体和 BL Lac 类天体比射电星系致密。对核区亮温度分布的研究表明,其 峰值位于约~10¹¹K 附近,只有 1% 的核的亮温度超过 10¹²K (逆康普顿极限 Kellermann & Pauliny-Toth, 1969)。对于具有短时标光变 (IDV) 的源,其核的 角大小比非 IDV 的源要小,所以该类源核区的亮温度高。

对于距离人类最近的星系核,银河系中心致密的射电源 Sgr A*,VLBI 观测表明其散射角大小在厘米波段远大于源内禀尺寸的角大小,即观测到的角大小由散射主导。而在 1 mm,由外推得到的散射角不到 15 µas,这相当于质量为4 百万太阳质量黑洞的史瓦西黑洞视界半径的 1.5 倍。由于可观测的最小辐射区域应与 Schwarzschild 半径相当,因而在毫米波段 Sgr A* 的真实角大小与散射角大小是可比拟的,这对于探测 Sgr A* 的大小和形状,从而使人们了解其吸积辐射过程的重要性是不言而喻的。1 mm-VLBI 观测表明,Sgr A* 在 1 mm的辐射区的尺寸小于预期的 Schwarzschild 黑洞视界的大小。对此的一种解释是 Sgr A* 的射电辐射并不是以通常认为的黑洞为中心,而是起源于围绕黑洞周围的吸积盘。这对理论解释黑洞周围的辐射提出了新的挑战 (Doeleman et al., 2008)。

3.4 展望

目前制约 3 mm-VLBI 观测的主要因素是探测灵敏度太低。在更短波长, VLBI 观测的另一个制约因素是由于较少的望远镜能够参加观测,(*u*, *v*)覆盖 差,成图的动态范围低。提高探测灵敏度的主要途径有:(1)在观测阵列中增 加高灵敏度的天线。(2)提高数据记录速率从而增加观测带宽。(3)延长积分 时间,比如通过改正大气相位扰动(Roy et al., 2006),以及应用特殊的条纹探 测方法(Rogers et al., 1995)。为了得到更可靠的图像,能够探测到更多的目标 源,最直接的办法就是增加干涉阵的接收面积。表 3.1 给出了目前使用中的以 及即将建成的将能够在 1 mm 及以下波段观测的一些天线的参数(Krichbaum et al., 2008a)。目前,1 mm VLBI 的基线(IRAM-USA)灵敏度限制在 100-200 mJy (7σ,相干时间 10s,采样率 4 Gbps)。在未来若干年,VLBI 的发展将会提供 至少 16 Gbps 的采样率,这将使得灵敏度再增加 2 倍。除此之外,未来大气相 位改正方法可以显著提高大气相干时间(Roy et al., 2006)。除了改善探测灵敏 度外,未来这些望远镜的加入还会改善(*u*, *v*)覆盖,从而提高成图的可靠性。 ALMA 的加入尤其会大大改善对低赤纬射电源的(*u*, *v*)覆盖,推动对银河系中 心致密射电源 Sgr A* (赤纬 -29°) 的毫米波/亚毫米波成图研究。随着更多的能够在短毫米观测的望远镜的加入,未来的短毫米波 (1 mm 和 0.85 mm) VLBI 观测能够对临近的超大质量黑洞 (例如 Sgr A*, M 87) 的中心辐射区域进行成像研究 (Krichbaum et al., 2006a, 2008b; Huang et al., 2009)。

随着技术进步,mm-VLBI 在灵敏度和图像质量上可以达到与目前 cm-VLBI差不多的水平。可以预见,在不远的将来,sub-mm-VLBI,空间 mm-VLBI将会使得我们最终对黑洞视界的细致成图研究成为可能,如果再伴以偏振的成图研究,将会有助于我们进一步研究活动星系核、微类星体中相对论性喷流的激发机制,探索喷流内部磁场形态及演化,更好地认识整个吸积系统的性质。

表 3.1: 已有的和正在规划建设中的能够在1毫米 (230 GHz) 及更短的波长进 行VLBI 观测的一些望远镜的特征及参数。

天线	天线所在地 (国家),海拔	直径	主面精度	效率	\mathbf{SEFD}^1
	[m]	[m]	$[\mu m]$		[Jy]
PdB-1	Plateau de Bure (法国), 2550	15	55	0.45	5182
PdB	Plateau de Bure (法国), 2550	6×15	55	0.45	864
PV	Pico Veleta (西班牙), 2900	30	67	0.39	1485
APEX	Chajnantor (智利), 5100	12	18	0.58	6295
ASTE	Chajnantor (智利), 4800	10	19	0.50^{2}	10700
HHT	Mt. Graham (美国), 3100	10	15	0.59	8979
KP	Kitt Peak (美国), 2000	12	75	0.35	10322
JCMT	Mauna Kea (美国), 4100	15	25	0.57	4141
CSO	Mauna Kea (美国), 4100	10	25	0.57	8618
SMA	Mauna Kea (美国), 4100	8×6	12	0.59	3093
Hawaii-6	Mauna Kea (美国), 4100	_3	25	0.57	1696
CARMA-1	Cedar Flat (美国), 2200	10.4	60	0.43	11373
CARMA	Cedar Flat (美国), 2200	_4	60	0.43	1142
LMT	Sierra Negra (墨西哥), 4600	50	70	0.38	556
ALMA-1	Chajnantor (智利), 5000	12	25	0.57	6469
ALMA	Chajnantor (智利), 5000	50×12	25	0.57	129

¹ 假定系统温度 T_{sys} = 150 K

² 假定效率为 0.5

³ Hawaii 相位阵由 SMA 和 CSO 以及 JCMT 组成

 4 6 \times 10.4 m + 9 \times 6.1 m

第四章 PKS 1749+096 的高分辨率 VLBI 观测研究

4.1 简介

PKS 1749+096 (又名 OT 081 和 4C +09.57) 是一个非常明亮的 BL Lac 天体。它的光学偏振度很高,可高达 32% (Fan & Lin, 1999). Dallacasa et al. (2000) 把它归类为高频倒转谱源 (high frequency peaker, HFP),但 Torniainen et al. (2005) 认为它是一个平谱源,只是在爆发期间谱才会倒转。 PKS 1749+096 从射电到 X 射线的多波段表现出强烈的光变。在较高频率的射 电波段它的光变很显著:在宁静态,流量密度还不到 1 Jy,但在爆发期,流量 密度可超过 10 Jy,其光变指数 (Var Δs = (S_{max}-S_{min}) /S_{min})在 37 和 90 GHz 分 别为 13.2 和 18.2 (Torniainen et al., 2005). 在 γ 射线波段,PKS 1749+096 尽管 没有被 EGRET 卫星探测到 (Mattox et al., 2001),但最近已被 Fermi 空间望远 镜证认为 γ 射线源 (Abdo et al., 2009)。

PKS1749+096的结构非常致密,VLA观测显示它在角秒尺度上没有被分解 (Rector & Stocke, 2003)。在毫角秒的尺度上,该源的结构由一个致密 且明亮的核主导,中心核成份的流量占到总流量的 90%以上 (Homan et al., 2001,及相关文献),而相对暗弱的、弯曲的喷流沿着东北方向喷出 (比如,Gabuzda et al., 1999; Lobanov et al., 2000; Lister & Homan, 2005).以往的观测 发现 PKS 1749+096 中喷流成份存在视超光速,视速度的范围大致为~1-14 *c* (Iguchi et al., 2000; Homan et al., 2001; Kellermann et al., 2004; Lister et al., 2009a). PKS 1749+096 也是能够用 1 mm VLBI 探测到的为数不多的致密源之 - (Krichbaum et al., 1997),因而是未来短毫米波 VLBI 观测研究合适的对象。

在本章,我们探讨对 PKS 1749+096 高分辨率 VLBI 观测研究的结果。在 § 4.2,我们对观测和数据的处理做一介绍。在§ 4.3,我们给出数据分析的结果, 之后 §4.4 是对结果的讨论。最后在 § 4.5 部分做一简要总结。PKS 1749+096 的 红移为 0.32 (Stickel et al., 1988),对应的光度距离为 D_L = 1674 Mpc 并且 1 mas 的角距离对应的线尺度为 4.64 pc。 0.1 mas yr⁻¹ 的自行对应视速度为 β_{app} = 2.0 c (采用宇宙学参数 H₀ = 71 km s⁻¹ Mpc⁻¹, Ω_{M} = 0.27, Ω_{Λ} = 0.73)。在本文 中,我们采用谱指数 α 的定义 S $\propto \nu^{\alpha}$ 。

4.2 观测和数据处理

我们在此讨论的两个历元 (1997 年 4 月 15 日和 2000 年 10 月 27 日)的 86 GHz 观测是由 CMVA 阵进行的。1997 年 (1997.288)的观测有 8 个望远镜参加 (Effelsberg, Onsala, Pico Veleta, Kitt Peak, Quabbin, Hat Creek, Haystack,和 VLBA-PT)。数据使用 MK III 系统记录,带宽为 56 MHz (A 模式)。在 2000 年 10 月份 (2000.822),对 PKS 1749+096 的观测有 9 个望远镜参加 (Effelsberg, Onsala, Pico Veleta, Haystack, VLBA-FD, VLBA-LA, VLBA-PT, VLBA-OV,和 VLBA-KP)。数据的有效带宽为 32 MHz。数据分别由 Haystack 的 MKIII 和 MKIV 相关处理机进行相关,积分时间为 1 秒。

对 PKS 1749+096 的 22 GHz VLBI 观测是为研究 OVV 1633+382 的一次大的流量爆发后的结构变化的项目 (code: BK090, BK092, 和 BK107) 中做为校准 源 (fringe finder) 进行的。这些观测一部分 (BK090 和 BK092) 是用 VLBA 阵进 行的,另一部分 (BK107) 是用 VLBA 阵及 Effelsberg 100 米望远镜共同进行的。这些观测的时间是从 2001 年 12 月到 2005 年 2月 (共 14 个历元),每次观测的时间间隔大约为 2-3 个月。观测以双偏振 (RCP 和 LCP) 进行,数据以 2 bit 格 式采样记录,每个中频通道带宽为 8 MHz,采样率为 256 Mbps (第一个历元的 采样率为 128 Mbps,每个偏振 2 个中频通道)。每个历元典型的积分时间为 20 分钟。数据由位于美国新墨西哥州 Socorro 的 VLBA 相关处理机对数据进行互 相关。

为了更进一步研究 PKS 1749+096 中喷流的运动学,我们分析了 1995 到 2006 年 11 年间 42 个历元的 15 GHz MOJAVE¹归档数据。其中的一些已经用来 研究该源喷流的运动学及 MOJAVE 样本喷流的统计性质 (Homan et al., 2001; Lister et al., 2009b)。我们希望通过这些数据能更加细致地研究 PKS 1749+096 喷流的结构变化及运动学。另外,我们还重新校准并分析了 Iguchi et al. (2000) 对该源在 1998 年 15 GHz 的一次 VLBA 观测。

除了上述 15 和 22 GHz 的多历元监测,我们还利用了 2 个历元 (1999 年 5 月 7 日 (1999.348),观测代码: BI012 和 2001 年 9 月 13 日 (2001.701),观测代码: BI018)、多频率 (8, 15, 22,和 43 GHz)的 VLBA 观测。观测在各个频率交替进行,数据以 VLBA 格式纪录,带宽为 8 MHz,共 4 个中频 (在 1999 年以左

¹http://www.physics.purdue.edu/MOJAVE/. This research has made use of data from the MO-JAVE database that is maintained by the MOJAVE team (Lister et al., 2009, AJ, 137, 3718).

旋圆偏振 LCP 进行,而在 2001 年分别以左旋和右旋圆偏振进行),2 bit 格式采样。在每个频率,数据积分时间分别为~100 (1999 年)和~40 (2001 年)分钟。

在 86 GHz, 1997 年数据的相关后处理使用 HOPS (Haystack Observatory Postprocessing System) 软件以及特别的 MPIfR 软件进行,具体的细节可参见 Lobanov et al. (2000)。2000年的数据首先使用 MK4IN 以及 BLAPP 命令 (Alef & Graham, 2002) 读入 AIPS 软件,剩余的条纹拟合、幅度校准以及大气不透 明度改正在 AIPS 软件里完成。在其它频率,相关后处理工作均在 AIPS 和 Difmap 软件里完成。数据的处理遵循一般标准的方法,包括相位和延迟校准 以及条纹拟合。幅度的校准采用各个天线的系统温度和先验的增益曲线。同 时在比较高 (≥15 GHz) 的频率,使用 AIPS 命令 "APCAL" 通过拟合系统温度 随着 air mass (即 1/sin (elev), elv 为天线俯仰)的变化进行大气不透明度的改 正。之后,我们在 Difmap 软件中进行成图自校准,并对校准过的数据模型拟 合,对源的结构进行量化。MOJAVE 归档的数据是已经条纹拟合和校准过的 uv FITS 文件。对这些数据,我们在模型拟合之前重新进行了成图自校准。为 了简化和便于比较模型拟合的结果,我们选取了圆高斯模型来代表喷流成份。 模型拟合的过程中,当 $\chi^2_{
u}$ 没有明显降低并且残图比较均匀时,就不再拟合新 的成份。我们用尽可能少的模型参数去拟合,并注意到模型拟合的结果并不唯

模型拟合的误差是根据 Fomalont (1999)的公式来计算的。拟合喷流成份的误差 (σ_r)由 $\sigma_r = \frac{\sigma_{rms} d}{2 I_{peak}}$ 给出,这里 σ_{rms} 是成份拟合以后的 rms, d和 I_{peak} 为成份的大小和成份的亮度峰值。对于一个非常致密的成份,该公式会低估误差,因而我们根据成图过程中像素的大小,引入附加的最小误差,这些大概与在各个频率普遍接受的 $\frac{1}{5}$ 倍波束大小的误差可比。对此,我们分别采用了 0.1 mas (8 GHz),0.05 mas (15 和 22 GHz),0.03 mas (43 GHz),和 0.02 mas (86 GHz)。各拟合成份的流量密度误差同时考虑了拟合的误差以及流量绝对定标的误差 (8,15,22 GHz 为 5%,43 GHz 为 10%,86 GHz 为 20%)。作为例子,图 4.1 (a-e) 给出了 PKS 1749+096 在历元 2001.701 (8,15,22,43 GHz)和 1997.288 (86 GHz) 的洁图,同时,拟合的圆高斯模型也在这些图上一并标出。在 2000.822,86 GHz 观测只在部分台站间获得了条纹 (Effelsberg,Onsala,VLBA-LA,和VLBA-OV 到 Pico Veleta的基线),因此我们对数据进行了单个的高斯模型拟合 (图 4.1 (f)),这是唯一可以获得的关于源的结构的信息。图 A.1 给出了所有历元所有频率的洁图,图像的参数和模型拟合的结果分别在表

A.1 和 A.2 中给出。

成份的认证通过检查各个历元的图像和模型拟合结果来进行,主要依据相邻历元各成份流量密度和位置(离核的距离和位置角)变化的连贯性。在一些历元存在着比较复杂的情况,比如,一些暗弱的成份可以逐渐变弱消失,某个成份可能会在随后的时间分解为两个成份或反之两个相邻成份会逐渐并合在一起。结合各个成份的谱信息(参见§4.3.2),我们把核成份命名为D,喷流成份按照拟合的喷出时间依此标记为C1-C11。少数的几个历元存在没有被认证的成份,这几个成份被标记为 x。

4.3 结果

4.3.1 pc 尺度的形态

在 pc 尺度上, PKS 1749+096 的形态由向东北方向的单边喷流结构主导 (Gabuzda et al., 1996; Lobanov et al., 2000; Lu et al., 2007)。从图 A.1 可以看 出,在我们所研究的时间里 PKS 1749+096 在 pc 尺度上存在着朝东北方向弯曲 的喷流结构,在各个频率展示出相似的形态。在低频率可以看到相对弱的结构 延展到~8 mas 处 (8 GHz),而随着分辨率的增加,这些延展成份在高频变弱并 被逐渐分解掉。1997 年 86 GHz 的图像确认了这种核-喷流的单边结构,并且可 以探测到一个离开核 0.12 mas 的喷流成份 (C5),该成份在向喷流下游运动的过 程中被陆续地探测到。喷流成份相比核来说较弱,在 8, 15, 22, 43 和 86 GHz, 平均而言,核的流量占 VLBI 总流量的比 <u>Score</u> 依次为 66.7,83.0,88.0,77.9, 和 80.0%。

4.3.2 喷流成份的谱及核的证认

借助于两个历元 (1999.348, 2001.701) 多频率的观测,我们可以研究喷流成份的谱以及认证喷流的核。图 4.2 中给出了喷流的核 (左图) 以及其它成份 (右图) 的谱。喷流成份 D 的谱在 1999.348 大致表现为平谱,在 2001.701 出现 明显的倒转,其光学薄的部分没有测量到,结合该成份是所有喷流成份中最为 致密的,因此我们可以把该成份认定为致密的喷流核。我们尝试用同步自吸收 (Jones et al., 1974, SSA) 模型来拟合喷流核的谱,

$$S_{\nu} = S_0 \nu^{2.5} [1 - \exp(-\tau_{\rm s} \nu^{\alpha - 2.5})], \qquad (4.1)$$

图 4.1: (a)-(e): PKS 1749+096 在 8, 15, 22, 43 以及 86 GHz 的图像, 观测历元 为 2001.701 (8, 15, 22, 43 GHz) 和 1997.288 (86 GHz), 图的参数参见表 A.1。(f): 86 GHz (2000.822) 的可见度数据, 实线代表圆高斯模型 (S=1.74 Jy, FWHM: 0.05 mas) 的拟合。

这里 ν 为观测频率, S_0 为在 1 GHz 处的内禀流量密度, τ_s 为 1 GHz 处 同步自吸收的光深, α 为光薄部分的谱指数。所得的最佳拟合结果分别为 $\alpha_D = -0.11 \pm 0.07, S_0 = 58.4 \pm 42.2 \text{ mJy}, \tau_s = 50.3 \pm 46.5$ (1999.348),以及 $\alpha_D = 0.05 \pm 0.01, S_0 = 24.6 \pm 0.6 \text{ mJy}, \tau_s = 125.8 \pm 7.1$ (2001.701)。其它喷流的 成份多显示为陡谱 ($\alpha \leq -0.75$),只有 C6 的谱比较平,一种可能是它与周围介 质相互作用产生激波,使得该成份显得比较致密,且谱较平。表 4.1 总结了对 所有成份光薄部分谱指数的拟合结果。

图 4.2: PKS 1749+096 喷流成份的谱, 左 (喷流核成份), 右 (喷流成份)。

ID	1999.348	2001.701
D	-0.11 ± 0.07	0.05 ± 0.01
C7		-0.82 ± 0.03
C6	-0.25 ± 0.11	-0.28 ± 0.25
C5	-0.75 ± 0.10	-1.28 ± 0.21
C1+C2	-0.76 ± 0.81	

表 4.1: PKS 1749+096 喷流成份谱拟合的结果

在同步自吸收的情况下,一个各向同性的喷流成份的磁场可以通过下列公式求得 (Marscher, 1983):

$$B_{\rm syn} = 10^{-5} b(\alpha) \nu_{\rm max}^5 \theta^4 S_{\rm max}^{-2} \delta / (1+z) , \qquad (4.2)$$

在这里, ν_{max} 为以 GHz 为单位的峰值频率, θ 为源的角大小 (以 mas 为单位), S_{max} 为峰值频率处的流量密度 (单位 Jy), $b(\alpha)$ 为谱指数 α 的函数。通过上述 SSA 拟合,我们可以得到在 1999.348, $S_{\text{max}} = 2.2 \text{ Jy}, \nu_{\text{max}} = 11.6 \text{ GHz}, 采用 b(\alpha) \simeq 1.8 及测得的角大小 \theta = 0.05 \text{ mas},可以得到,<math>B_{\text{syn}} = 3.7 \times 10^{-3} \delta \text{ mG}.$

假设喷流中粒子能量 *E_e* 与磁场能量 *E_B* 均分,我们也可以利用同步辐射的光度 *L* 估算磁场。粒子能量为

$$E_e = f(\alpha, \nu_1, \nu_2) L B^{-\frac{3}{2}}, \tag{4.3}$$

这里, $L = 4\pi d_{L}^{2} \int_{\nu_{1}}^{\nu_{2}} S d\nu$, $f(\alpha, \nu_{1}, \nu_{2})$ 为一个表格函数 (Pacholczyk, 1970), ν_{1} 和 ν_{2} 分别为同步辐射的最低和最高截至频率,通常分别为 10⁷ Hz 和 10¹¹ Hz。 磁场的能量密度为 $\frac{B^{2}}{8\pi}$, 在球对称的情况下,源 (半径为 *R*)的磁场能量为

$$E_B = \frac{B^2}{8\pi} \cdot \frac{4}{3}\pi R^3 = \frac{B^2 R^3}{6}.$$
(4.4)

如果重粒子和电子的能量比为 η ,源的总能量则可以表示为

$$E_{\text{total}} = (1+\eta)E_e + E_B$$

= $(1+\eta)f(\alpha,\nu_1,\nu_2)LB^{-\frac{3}{2}} + \frac{B^2R^3}{6}.$ (4.5)

比值 η 取决于相对论电子的产生机制,在一个正负电子对组成的等离子体中 $\eta \approx 1$,而对能量主要贮存在质子中的"正常"(质子和电子)等离子体, $\eta \approx 2000$,我们在此采用 $\eta = 100$,似乎是比较合理的 (Pacholczyk, 1970)。注意到 $E_e \propto B^{-\frac{3}{2}}$ 和 $E_B \propto B^2$,因而总能量 E_{total} 有极小值,并且此时磁场为

$$B_{\rm eq} = \left(\frac{9}{2}(1+\eta)f(\alpha,\nu_1\nu_2)LR^{-3}\right)^{2/7}$$

$$\simeq 4.7 \times 10^{-2} (S_{\rm max}\nu_{\rm max}D_{\rm L}^{-1}\theta^{-3})^{2/7}.$$
(4.6)

这里 $f(\alpha, \nu_1, \nu_2) = 1.06 \times 10^{12} \left(\frac{2\alpha+2}{2\alpha+1}\right) \frac{\nu_1^{(1+2\alpha)/2} - \nu_2^{(1+2\alpha)/2}}{\nu_1^{1+\alpha} - \nu_2^{1+\alpha}}$,且, $f(-0.11, 10^7, 10^{11}) = 0.74 \times 10^7$, D_L 为光度距离,单位 Gpc。利用上述求解 B_{syn} 的参数,我们可以获得 $B_{eq} = 1.3$ G。这个值要比通过同步自吸收求得的磁场大的多,意味着要么粒子能量主导或者辐射是相对论集束效应比较强。在后者的情况下,由于 $B_{syn} = B_{eq}$ 对多普勒因子 δ 的依赖关系不同 (方程 4.2 和 4.6),可知, $\frac{B_{eq}}{B_{syn}} \simeq \left(\frac{\delta}{1+z}\right)^{6-\frac{16\alpha}{7}}$,由此定出的多普勒因子称作均分多普勒因子 δ_{eq} 。对于喷流核成份 D,可知 $\delta_{eq}^{D} = 7.4$ 。

4.3.3 C5 成份

C5 是所有成份中数据覆盖最好的一个。它从喷出并离开核区到膨胀变 弱接近探测灵敏度的过程基本上都被追踪到。在图 4.3 中,我们展示了该成份 在 15 GHz 的流量密度随时间的演变。C5 喷出后的流量密度表现出快速单调 的衰减,直到在 2002 年流量密度降低到 ~20 mJy。与此不同的是总流量在这 段时间内经历了 3 次爆发 (参见图 4.8)。从图 4.3 中可以看出,C5 在向喷流 下游运动的过程中流量的衰减逐渐变慢。这个过程可以合理地被一个形式为 $S(t) \sim (t - t_0)^{\eta}$ 的幂律函数来拟合,其中 $t_0 = 1995.45 \pm 0.01$, $\eta = -2.97 \pm 0.07$ (图 4.3 中实线所示)。

图 4.3: C5 成份的流量密度在 15 GHz 的演化。图中实线为幂律函数的拟合, 拟 合参数在正文中给出。

在图 4.4 中我们分别给出了三个历元 (1998 (Iguchi et al., 2000), 1999, 和 2001) 多频率观测测量的 C5 成份的谱。三个历元的谱指数分别为 -0.71 ± 0.05^2 (1998.849), -0.75 ± 0.10 (1999.348) 和 -1.28 ± 0.21 (2001.701)。这表明谱随着时间在变陡。然而,由于 C5 流量密度随着时间的衰减,在其演化后期谱指数的测量误差就比较大,通过 χ^2 检验,谱变陡的概率为 97%。为此,我们又分析了一组新的 2001 年 5 月 12 日 (2001.362, code: BW055) 多频率 (2.3, 8.4,

²Iguchi et al. (2000) 基于非同时的数据得到的谱指数为 -0.98±0.05

15.3, 22,2 和 43 GHz) 的 VLBA 数据。我们得到 C5 在这个历元的谱指数 α 为 -1.17 ± 0.10 。这进一步确定了 C5 成份的谱随着时间变陡 (概率 99.995%)。

图 4.4: C5 成份谱的演化。实线为幂指数拟合。

随着喷流成份往外运动,流量密度表现出这种类似的单调递减的现象也在 一些其它的源中观测到(比如,3C345,0735+178,Unwin et al., 1983;Gabuzda et al., 1994a,b)。流量密度的演化可以用几何的多普勒增亮效应或内禀的效应, 比如辐射或者膨胀损失,来解释。

在前者的情况下,一个成份观测到的流量密度 (S) 与共动坐标系内内禀的 流量密度 (S₀) 的关系为: $S = S_0 \delta^{3-\alpha}$ (Scheuer & Readhead, 1979)。该公式表明 几何效应引起的流量变化应与频率无关,与图 4.4 所示谱的变陡不一致。再者,在这种情况下,为解释流量的变化,C5 的轨迹应该极度弯曲,这与观测到的 轨迹不一致 (见 §4.3.4)。

在后者的情况下,一个简单的绝热膨胀模型预言 $S(t) \sim (t - t_0)^{\eta}$, $\eta = 4\alpha - 2$ (Kardashev, 1962),并且谱指数保持不变 (van der Laan, 1966)。根据 $\eta = -2.97 \pm 0.07$ 可知谱指数 $\alpha = -0.24 \pm 0.02$,这比测量到的谱指数要平。拟 合的喷出时间 $t_0 = 1995.45 \pm 0.01$ 也比根据运动学拟合的时间 1996.9 ± 0.1 早, 或许意味着膨胀不是从流量密度无限大开始。另外一种可能性是绝热膨胀但 同时电子以能谱指数 $2\alpha - 1$ 不断地被加速。在这种情况下,会有 $\eta = 2\alpha - 1$ (Kardashev, 1962),因而 $\alpha = -0.98 \pm 0.04$,这大致与测量的谱指数在误差范围内一致。

图 4.4 所显示的谱的变化使人联想到能量损失过程。按照方程 4.2 我们 可以估计磁场强度为 $B_{\text{syn}} = 25.5 \text{ mG}$ 采用 $\nu_{\text{max}} = 2.37 \text{ GHz}, \theta = 1.40 \text{ mas}$, $S_{\text{max}} = 0.90 \text{ Jy}, b(\alpha) = 3.6 \text{ and } \delta_{\text{eq}} = 2.5$ (Iguchi et al., 2000)。考虑同步辐 射的冷却时标 $t_{\frac{1}{2}}$ 为 $\simeq 2.76 \times 10^4 B_{\text{syn}}^{-1.5} \nu_{\text{max}}^{-0.5}$, 这里 $t_{\frac{1}{2}}$ 以年为单位, B_{syn} 以毫 高斯 (mG) 为单位, ν_{max} 以 GHz 为单位。由此可以计算得出 C5 的冷却时标 为 $t_{\frac{1}{2}} \sim 1.4 \times 10^2$ 年。这个时间相比流量演化的时标长许多。根据 Readhead (1994), 粒子的能量 (u_{p}) 与磁场的能量 (u_{m}) 的比值可以写作 $\frac{u_{\text{p}}}{u_{\text{m}}} = (\frac{B_{\text{eq}}}{B_{\text{syn}}})^{17/4}$ 。 由源的静止坐标系内 $B_{\text{eq}} = B_{\text{syn}}$ 相等,可知 $\frac{B_{\text{eq}}}{B_{\text{syn}}} \simeq (\frac{\delta_{\text{eq}}}{1+z})^{6-\frac{16\alpha}{7}}$ 。估算的均分多 普勒因子 $\delta_{\text{eq}} = 2.5$ 意味着 $\frac{u_{\text{p}}}{u_{\text{m}}} \simeq 5.2 \times 10^9$ 。这或许意味着 C5 是由粒子主导的, 并且逆康普顿散射对流量的快速下降起到相当的作用。

4.3.4 喷流的运动学

4.3.4.1 22 GHz 结果

图 4.5: 22 GHz 喷流成份离核的距离 (左) 以及位置角 (右) 随时间的变化。左图 中实线代表线性拟合 (结果参见表 4.2)。为清楚显示离核较近的内部成份, C5 没有在图中标出。

为了研究喷流的运动学,我们线性拟合了 22 GHz 喷流成份离核的距离随着时间的变化 (图 4.5,左),拟合的结果总结在表 4.2 中。图 4.5 (右)给出了喷流成份位置角随时间的变化。借助于图 4.5,我们在 22 GHz 共认证了 7 个 (C5-C11) 成份,不过由于在 2003-2004 间的时间覆盖的空隙,C9 的认证存在一定

Ic	d.	#	μ	β_{app}	t_0	PA
			[mas/year]	[c]	[year]	[degree]
C	25	7	0.43 ± 0.03	8.6 ± 0.6	1996.2 ± 0.4	37.2 ± 5.2
C	26	3	0.31 ± 0.10	6.2 ± 2.0	1999.0 ± 1.0	3.7 ± 1.5
C	27	9	0.44 ± 0.03	8.8 ± 0.6	2001.0 ± 0.1	-
C	28	5	0.25 ± 0.03	5.0 ± 0.6	2001.5 ± 0.1	12.9 ± 2.5
C	29	5	0.93 ± 0.20	18.6 ± 4.0	2003.1 ± 0.3	22.4 ± 2.8
С	10	6	0.95 ± 0.14	19.0 ± 2.8	2004.0 ± 0.1	23.5 ± 3.4
С	11	3	0.93 ± 0.04	18.6 ± 0.8	2004.5 ± 0.1	14.2 ± 2.4

表 4.2: 22 GHz 喷流成份自行的线性拟合结果。表中列出了成份的代号, 拟合 历元的个数, 自行 μ, 视速度 β_{app}, 以及喷出时间 t₀。

的不确定性。这些成份均显示出远离喷流核的运动,自行在 0.25-0.95 mas/yr 之间,对应视速度为 5-19 c。注意到有趣的是,这些成份的视速度似乎归为两 类, C9, C10, C11 的视速度相比其余的 (C5, C6, C7, C8) 要快一些 (2-3 倍)。 从图 4.5 (右)可以看出,多数成份的位置角没有发生明显变化,只有 C7 成份 显示出连续性的、比较明显的变化。我们稍后对此进行讨论。对于那些没有明 显位置角变化的成份,我们在表 4.2 中给出了位置角的平均值。

4.3.4.2 15 GHz 结果

注意到 22 GHz上喷流成份速度的两种分布,并且考虑到 BL Lac 天体喷流 的运动学可能会存在模式的转换 (Britzen et al., 2010b),因此考虑分析时间覆 盖相对较长的 15 GHz MOJAVE 的数据来进一步澄清这个问题。然而时间采样 的不均匀 (比如 1998-1999 年期间以及 2005 年前后的空隙)以及喷流成份运动 本身的复杂性使得无法追踪观测期间的所有成份,因此我们选择研究能够追踪 其演化的几个主要喷流成份,从而得到喷流运动学的主要特征。与 22 GHz 类 似,图 4.6 (左) 给出了在 15 GHz 上喷流成份离核的距离随着时间的变化,并对 比较明显地显示出自行的成份进行了线性拟合,拟合的结果总结在表 4.3 中。 这些成份显示出基本一致的运动速度,并且对于在 15 和 22 GHz 同时观测到的 成份 C5 和 C7,考虑到不同频率的时间覆盖以及数据点多少的不同,我们认为 两个频率拟合的喷流速度与喷出时间是互相一致的 (表 4.3 和 4.2)。C6 成份离

图 4.6: 15 GHz 喷流成份离核的距离 (左) 以及位置角 (右) 随时间的变化。左图 中实线代表线性拟合 (结果参见表 4.3)。右图中由于显示的关系,一些喷流成 份的位置角进行了整体的移动。

核的距离随着时间没有显示出线性增加的特征,因而我们并未对其进行拟合。

Iguchi et al. (2000) 测得一个喷流成份 (C1,对应我们认证的 C5) 的自行为 0.68 ± 0.14 mas yr⁻¹,他们认为该成份的喷出时间大约在 1997 年 5 月,略微晚 于我们拟合得到的喷出时间 (1996.9),但是他们的结果只是依据 3 个历元的观测。在他们的观测期间 (1998 年),Iguchi et al. (2000) 推断核区包含着一个未能 分解的喷流成份,该成份沿着 ~ -30° 。从我们的分析结果可以看出,这个成 份恰好为 C6 (见表 A.2),尽管我们根据 22 GHz 3 个历元的线性拟合得出的喷出 时间误差比较大,但是它的喷出时间 (1999 年左右),位置角 (沿着 ~ -30°)与 之符合的很好。该成份也被空间 VLBI 在 5 GHz 的观测 (历元为 2001.24) 检测 到 (Gabuzda, 2003)。Homan et al. (2001)利用 1996 年 的 6 个历元的数据报告 C4 成份 (他们称为 U3) 的自行为 0.45 mas/yr,略快于我们测得的 0.29 mas/yr。他们认为在其中一些历元,该成份位置的测量受到比较强的喷流核的影响,类 似地,在历元 1997.658 核的影响可能也是造成我们测量的自行速度比较低的 原因。另外,Lister et al. (2009b) 给出了 PKS 1749+096 喷流的最大视速度为 6.8 *c*。

图 4.6 (右) 展示了喷流成份位置角随时间的变化。除几个数据点外,多数 成份在向喷流下游运动的过程中保持了基本不变的位置角,我们同样在表 4.3 中给出了它们的平均值。由图中可以看出,C6 和 C7 成份是个例外,他们的

表 4.3: 15 GHz 喷流成份自行的线性拟合结果。表中列出了成份的代号, 拟合 历元的个数, 自行 μ, 视速度 β_{app}, 以及喷出时间 t₀。

Id.	#	μ	β_{app}	t_0	PA
		[mas/year]	[c]	[year]	[degree]
C1	8	0.35 ± 0.25	7.0 ± 5.0	1982.8 ± 9.5	25.6 ± 2.6
C2	8	0.37 ± 0.09	7.4 ± 1.8	1988.8 ± 1.8	28.1 ± 3.8
C3	7	0.44 ± 0.07	8.8 ± 1.4	1993.8 ± 0.4	27.9 ± 4.1
C4	10	0.29 ± 0.04	5.8 ± 0.8	1995.2 ± 0.2	29.3 ± 2.2
C5	25	0.51 ± 0.02	10.2 ± 0.4	1996.9 ± 0.1	41.2 ± 3.2
C7	20	0.36 ± 0.02	10.2 ± 0.4	2000.8 ± 0.1	-

图 4.7: C6 和 C7 成份在天空平面的运动轨迹,表明它们运动的 non-ballastic 特征。

位置角显示了系统性的变化,显示出 non-ballastic 的运动特征。为此,我们在 图 4.7 展示了这两个成份在天空平面的运动轨迹。很明显,C6 和 C7 的运动是 non-ballastic 的。

图 4.8: PKS 1749+096 在 15 GHz 的总流量图,图中点连线为 UMRAO 测得的总流量,实心点为 VLBI 观测的流量在每个历元的叠加。图中竖线标出了 C4-C11 成份从核区喷出的时间,其长度正比于第一次观测到该成份时的流量 密度 (C4-C7: 15 GHz, C8-C11: 22 GHz),横线代表拟合得出的喷出时间的误差。

很多 AGN 喷流中观测到成份的产生与总流量的爆发存在联系 (比如, Savolainen et al., 2002)。图 4.8 展示了 UMRAO 在 15 GHz 测量的 PKS 1749+096 的总流量,对每一个 VLBI 观测的历元,我们也计算了所有成份叠加的总流量, 两者的一致性也证明了 VLBI 观测幅度校准的可靠性。在图 4.8 中,我们标明 了喷流成份 (C4-C11) 通过拟合得到的喷出时间。显而易见,喷流成份的产生 与总流量爆发显示了很好的相关性。因此我们认为,至少对 PKS 1749+096 而 言存在着喷流成份产生与射电总流量爆发的相关。同时,我们也在图中显示了 每个新产生成份第一次被检测到时的归一化 (相对 C6) 流量密度。可以看出, 喷流成份的强弱与总流量爆发强弱对应 (比如 C9)。当然,由于我们的测量不能 保证所有成份都是在离核相同的距离被探测到,喷流成份在离开核的过程流量 衰减的很快(参见图 4.3),而且衰减的快慢程度不一,这都会带来一定的偏差, 比如 C10 与 C11 就属于这种清况。Nieppola et al. (2009)研究了 PKS 1749+096 多个频率(5,8,15,22,37,90 GHz)的光变曲线并认证了 5 个主要爆发,它 们分别在 1993,1995,1998,2001,和 2002 年达到峰值,这些爆发均可以在 我们证认的喷流喷出的时间中找到对应,分别为 C3,C4,C6,C7,C8³。

4.3.5 喷流的物理参数

通过测量的视速度可以估算喷流的一些物理参数。由于 C5 ($\beta_{app} = 10.2 c$) 的测量数据点最多 (25 个),测量最可靠,因此我们利用该成份。喷流的多普勒 因子 (δ) 取决于洛伦兹因子 Γ ,喷流视向角 θ ,以及源的真实速度 β :

$$\delta = \frac{1}{\Gamma(1 - \beta \cos \theta)},\tag{4.7}$$

其中 $\Gamma = \frac{1}{\sqrt{1-\beta^2}}$ 。

我们可以计算最大允许视向角 θ_{max} ,通过

$$\sin \theta_{\max} = \frac{2\beta_{\text{app}}}{(1+\beta_{\text{app}}^2)} \tag{4.8}$$

并且给出洛伦兹因子的下限,

$$\Gamma_{\min} = \sqrt{1 + \beta_{\rm app}^2},\tag{4.9}$$

对于 C5, $\theta_{\text{max}} = 11.2^{\circ}$, $\Gamma_{\text{min}} = 10.2$ 。对于给定的真实速度 β, 使得视速度 最大的临界视角 $\theta_{\text{cri}} = \arcsin(\frac{1}{\Gamma})$, 对 C5 来说, $\theta_{\text{cri}} = 5.6^{\circ}$ 。由 Γ_{min} 和临界视角 θ_{cri} , 根据 4.7 式,可知此时 $\delta = \Gamma_{\text{min}} = 10.2$ 。这个结果说明 C5 成份的多普勒 因子与核成份 D 的均分多普勒因子一致, $\delta_{\text{eq}}^{\text{D}} = 7.4$ 。对于更小的视角 ($\theta \rightarrow 0$), 多普勒因子趋向于极限 ~ 2 $\Gamma = 20.4$ 。

4.4 讨论

4.4.1 结构变化

在图 4.9 中,我们画出了喷流位置角在 15 和 22 GHz 随着离核距离的分布。 为了能够区分由于离核区较近时大的位置角误差造成的不确定性,我们同时在

³C8 在演化晚期 (历元: 2003.216) 的位置可能受到了此时尚未与核完全分解开的 C9 成份的影响,因而考虑 C8 的喷出时间 (2001.5) 仍然与 2002 年的爆发对应

每个离核距离的间隔内比较了位置角的弥散和由通常认为的 1/5 波束大小 (由于多数观测在15 GHz,取 0.5 mas) 所引入的误差 (图 4.9,内插图),由图中可以看出,每个间隔内的位置角的弥散都大于通常的误差,因此可知位置角不是固定的。从位置角的分布显而易见的是在离核大约 < 4 mas 内没有一个所有成份都可以遵循的运动轨迹。不过需要注意的是这些观测的时间采样是很不均匀的,比如 1996 年有 7 次观测,而在 1998 年只有一个历元的观测。有鉴于此,图 4.10 中展示了不同年份的喷流脊线 (这里定义为某一历元喷流各个成份的连线),清楚地显示了喷流位置角的变化。

图 4.9: 所有 15 和 22 GHz 的喷流成份位置角随着离核距离的变化。内图为在每 一个离核位置间隔 (0.5 mas) 内,位置角的 rms(阴影部分) 与通常认为的 1/5 波 束大小位置误差造成的不确定性 (空白部分) 的对比。

由表 4.2 和 4.3 也可以看出,各成份的喷出位置角是不同的,而最为明显的 是 C6 和 C7 成份。事实上,很多 AGN 喷流中存在这种喷出位置角的变化 (比如 PKS 0048-097, Kadler et al., 2006)。喷流位置角的变化通常被认为是由于喷

流的进动造成的,而进动可能由双黑洞系统,或者翘起的吸积盘触发。一个简单的情形是一个 ballistic 的进动喷流模型 (garden hose model),喷流成份在不同时间、不同的位置角喷出,喷出后的成份沿着 ballistic 的轨迹运动 (Stirling et al., 2003)。喷流的进动应该导致内部喷流的结构变化以及不同成份在不同的位置角喷出。我们的数据显示 PKS 1749+096 的喷流结构的确是变化的,并且不同成份的喷出位置角也是不同的,但是这些位置角却是比较随机的,并没有如进动模型所预期的系统性的变化。另一方面,这些位置角的变化的时间尺度相比进动周期要短许多 (Lobanov & Roland, 2005)。

图 4.10: 喷流的脊线随着时间的变化 (15 GHz)。为避免过于拥挤,我们在每年 只选取一个历元作为代表。

4.4.2 BL Lac 类天体喷流的运动学

就喷流运动学而言, Britzen et al. (2010b) 最近指出, BL Lac 类天体与 类星体明显的不同。总的说来,他们认为这类天体的运动学不能总用标准的

AGN 视超光速运动模型来描述,而是存在形态模式的转换,即在一段时间内, 喷流成份有视超光速运动,与类星体的喷流一致,而在另一段时间内,喷流成 份不向外运动,而是沿着与喷流脊线垂直的方向运动。对 PKS 1749+096 而言, 我们没有发现这类形态的模式转换,有可能是我们所观测的时间覆盖不够长所 致。相对的,通过拟合喷流成份的向外运动,我们认为可能存在两种不同的自 行速度,并且同时存在着 ballistic 与 non-ballistic 的运动成份,从而造成喷流 的弯曲。Kudryavtseva et al. (2011)也在类星体 B0605-085 中观测到这样一个 类似 C6 和 C7 的成份并且据此认为这是喷流进动的结果。

BL Lac 类天体的喷流速度通常认为比类星体慢,一般 $\leq 5c$ (Gabuzda et al., 1994a; Jorstad et al., 2001; Hovatta et al., 2009)。从我们所测量的自行来看, PKS 1749+096 平均视速度为 ~ 9*c*,并且可以高达 19*c*,显示出比其它该类天体快的运动速度。从这个意义上说,PKS 1749+096 是个比较特殊的 BL Lac 天体,与类星体中喷流的运动速度~10-20*c* 类似。

4.5 小结

我们在本章给出了对 PKS 1749+096 多历元 (61 个,时间跨度约为 10 年), 多频率 (8,15,22,43,和 86 GHz) VLBI 观测研究的结果。PKS 1749+096 在 pc 尺度上存在着朝东北方向的喷流,其致密的核区流量占到 VLBI 总流量的 80% 左右。通过两个同时的 (1999.348 和 2001.701) 多频率的观测,我们分析了 VLBI 成份的谱,确定了成份 D 为喷流的核。通过讨论能量均分条件下的磁场, 我们得到核区的均分态多普勒因子为 7.4,与通过运动学得到的喷流成份 (C5) 的多普勒因子基本一致。

我们仔细研究了 C5 成份的流量演化,发现单纯的绝热膨胀模型和多普勒 增亮模型均不能很好地解释流量的衰减,我们推断该成份可能远离能量均分状 态而由粒子主导,其流量的快速衰减除了膨胀之外,可能还由逆康普顿散射的 贡献。对喷流成份运动学的研究显示在 PKS 1749+096 中,喷流的速度存在"双 峰式"的分布,C9,C10,C11 的自行视速度明显快于其它成份,并且同时存在 ballistic 与 non-ballistic 的运动成份,这种运动产生的原因目前还不清楚。我们 得到成份的视速度位于 5–19*c*之间。在 PKS 1749+096 喷流中,拟合喷流成份 的喷出时间与射电总流量的爆发之间有一定的对应关系,从而支持射电流量爆 发与新成份产生存在着联系的观点。

第五章 VX Sgr SiO 脉泽的高分辨率观测研究

在本章,我们讨论 M 型半规则变星 VX Sgr 拱星包层中的 43 GHz (v = 1, J = 1 - 0) 和 86 GHz (v = 1, J = 2 - 1) SiO 脉泽的高分辨率、多历元观测研 究的一些初步结果。观测是利用 VLBA 在 2007 年 5 月 15 日到 24 日的连续 10 天内进行的。这些观测允许我们首次对恒星周围脉泽辐射的强度及结构变化进 行天时间尺度上的研究。同时,我们期望通过比较两个频率上脉泽辐射的空间 分布,来进一步增进对脉泽抽运机制的理解。

5.1 简**介**

SiO 脉泽是研究晚型星拱星包层内部壳层物理环境和运动很好的探针。这些脉泽通常位于晚型星几个 (2-6个, McIntosh et al., 1989) 恒星半径处的尘埃层。这些晚型星一般是 Mira 变星和超巨星。由于这些斑状的脉泽辐射亮温度非常高,它们是高分辨率 VLBI 观测的理想目标源。而另一方面,VLBI 观测也是唯一能够对这些辐射区域进行细致成像研究的工具。以往高分辨率的研究表明晚型星周围的脉泽辐射常常呈现出类环状或者椭圆状的形态,意味着SiO 脉泽的放大路径是由切向主导的。观测还表明恒星周围尘埃气体具有复杂的运动学特征,比如,收缩 (Boboltz et al., 1997),膨胀 (Diamond & Kemball, 2003),甚至是旋转 (Boboltz & Diamond, 2005)等。

VX Sgr 是一个 M 型半规则变星,其谱型位于 M 5.5 到 M 9.8 之间 (Lockwood & Wing, 1982)。它的平均光变周期为 732 天 (Kholopov et al., 1987),但 是通过检查 AAVSO 过去近 80 年的光变曲线发现存在一些相对宁静的期间 (Kamohara et al., 2005,及图 5.1)。Lockwood & Wing (1982)的研究表明 VX Sgr 的有效温度为 2400–3300 K (光学流量极小到极大)。VX Sgr 有很高的质 量损失率 ~ $10^{-4} - 10^{-5} M_{\odot} yr^{-1}$ (Pijpers, 1990; Danchi et al., 1994),从而在恒 星周围形成一个冷的气体尘埃包层。Danchi et al. (1994)估算尘埃包层的内 半径约为 ~ 0.06 (~ 100 AU)。其富氧的拱星尘埃包层中已经探知存在很强的 OH, H₂O,和 SiO 脉泽辐射 (Chapman & Cohen, 1986; Greenhill et al., 1995; Doeleman et al., 1998; Marvel et al., 1998; Murakawa et al., 2003; Kamohara et al., 2005; Chen et al., 2006; Szymczak et al., 2010; Vlemmings et al., 2011)。早期的观测表明, OH 主线脉泽和 H₂O 脉泽位于大致相同的壳层, 离中央星 ~ 3 × 10¹⁵ cm 处, 而 OH 辅线脉泽 (1612 MHz) 则位于~ 2 × 10¹⁶ cm 的位置 (Chapman & Cohen, 1986)。Greenhill et al. (1995) 对 SiO 脉泽的观测显示其位 于平均半径约为 4.5 × 10¹⁴ cm 的环形区域。

VX Sgr 的距离测定一直存在很大不确定性 (参见 Chen et al., 2007, 表一), 因而其在赫罗图上的位置就不确定。为了便于与以往的结果进行比较,我 们在此采用的距离为 1.7 kpc,这与多数的测量结果一致 (Marvel et al., 1998; Murakawa et al., 2003; Chen et al., 2007)。在这个距离, 1 mas/yr 的自行对应 的速度为 8.1 km/s。

图 5.1: VX Sgr 从 1991 年 3 月份到 2011 年 3 月份的光变曲线。图中箭头位置 对应 2007 年 VLBA 观测的时间。数据来源: http://www.aavso.org

5.2 观测和数据处理

在 2007 年 5 月份,我们对 VX Sgr 的 43 GHz (v = 1, J = 1 - 0,静止频 率 43.122027 GHz) 和 86 GHz (v = 1, J = 2 - 1,静止频率 86.243442 GHz) SiO 脉泽进行了连续 10天 (15–24 日) 的 VLBA 观测。VX Sgr 是做为校准源而观测 的,其目的是为了提高银河系中心射电源 Sgr A* 观测的幅度校准 (Lu et al., 2011)。目标源 Sgr A* 和校准源 VX Sgr, NRAO 530, PKS 1749+096, 3C 279 和 3C 446 以频率转换的模式在 22, 43, 和 86 GHz 之间进行观测。VX Sgr 与 Sgr A* 交替轮换观测,但是只在 43 GHz 和 86 GHz。对 VX Sgr 而言,每个历 元总共观测了约 20 个 scan,每个 scan 约为 1 分钟。

观测以左旋和右旋圆偏振进行,数据被记录在带宽为 16 MHz 的中频 (IF) 上。数据的相关在 NRAO 的数据相关中心 (Socorro, New Mexico) 进行,整个 频带被分为 256 个通道,相应的谱分辨率为 62.5 KHz,对应于 0.44 (43 GHz) 和 0.22 (86 GHz) km/s 的速度分辨率。

数据的相关后处理在 AIPS 和 Difmap 软件中进行。校准的过程主要包括 VLBA 采样器偏差改正,带通改正,多普勒改正,残余延迟和条纹率改正以及 幅度校准。在带通改正的过程中,我们只对带通的幅度响应做了改正。由于 观测不是以研究 VX Sgr 为目的,因而连续谱源没有以谱线的模式进行相关。 我们利用较低谱分辨率的连续谱数据 (每个 16 MHz的中频有 32 个通道)对 VX Sgr 的谱线数据进行带通改正校准。我们以MK¹天线为例在图 5.2 中比较了带 通改正前后 VX Sgr 的谱轮廓。从图中可以看到,虽然由于外推的影响改正后 仍然存在着微小起伏,但带通的响应已经基本被改正。

图 5.2: 带通改正前 (左图) 和后 (右图) 的比较。数据观测历元是 2007 年 5 月 16 日, 频率为 43 GHz。

我们用 AIPS 命令"SETJY" 和 "CVEL" 来补偿各台站在观测过程中由于地 球自转造成的不断变化的多普勒频移,即多普勒改正。图 5.3 中比较了多普勒

¹Very Long Baseline Array (VLBA) 天线阵包括10个天线,分别是: Mauna Kea (MK), Owens Valley (OV), Brewster (BR), Kitt Peak (KP), Pie Town (PT), Fort Davis (FD), Los Alamos (LA), North Liberty (NL), Hancock (HN), St. Croix (SC)

改正前后谱轮廓的变化。对于图中显示的 KP-LA 基线,改正后的谱轮廓较之前移动了约 -7 个通道。

图 5.3: 多普勒速度改正前 (左图) 后 (右图) 的比较。数据观测历元是 2007 年 5 月 16 日,频率为 43 GHz。注意右图中多普勒改正后谱线轮廓的移动 (大约 -7 个通道),此时带通改正已经应用。

相位校准分成两个步骤来进行。首先因为谱线源的辐射只分布在很窄的频段内,通过自身很难求残余延迟,因而通过对连续谱源的条纹拟合求解残余延迟,然后再应用到谱线源上。其次,对一个参考通道进行条纹拟合,求解残余条纹率。在条纹拟合求解残余条纹率过程中,我们选用一个初步的参考通道结构图做为模型,而不是选用点源模型,以消除参考通道源的结构相位影响。条纹拟合以后,谱线的相位和幅度都发生了明显的变化 (图 5.4)。

对于幅度校准,我们使用谱线源自相关谱"标准模板"的方法(Reid, 1995)。 该方法要首先选择观测的某个 scan,从而得到一个标准的总功率谱作为模板。 这个总功率谱应该是"高质量"的,也就是要从 VLBI 阵中一个高灵敏度的天线 在比较合理的俯仰位置观测时获得。图 5.5 展示了一个这样的总功率谱模板并 标出了 AIPS 命令"ACFIT"所要给定的基线和谱拟合范围。通过测量到的系 统温度和增益,就可以把该标准谱校准到以流量密度(央斯基)为单位,这与 连续谱源的幅度校准是一致的。通过对比其它天线,其它时间的总功率谱,我 们就可以获知各个天线相对增益的变化,从而可以把所有可见度的幅度校准到 以流量密度为单位。该方法已在谱线 VLBI 观测中广泛应用,其优点是可以获 得很高的相对幅度校准精度。绝对的幅度校准精度则取决于标准谱的的流量定 标。通过求解各台站的接收机温度和天顶的不透明度,我们改正了大气不透明

图 5.4:条纹拟合前 (左图) 后 (右图) 的比较。数据观测历元是 2007 年 5 月 16 日,频率为 43 GHz。

图 5.5: 在幅度校准时作为"模板"的 MK 天线的总功率谱。数据观测历元是 2007 年 5 月 16 日,频率为 43 GHz。如图中所示,谱拟合通道范围: 125-155, 基线拟合通道范围: 60-100。

度的影响。图 5.6 中比较了幅度校准前后的幅度的变化,此后幅度已经校准到 以央斯基为单位。在 86 GHz,由于自相关谱质量不够好,我们没能用上述方法 准确地进行幅度校准,因而仍然用各个台站测量的系统温度和先验的增益来校 准幅度,同时也考虑了大气不透明度的影响。

图 5.6: 幅度校准前 (左图) 后 (右图) 的比较。右图中的幅度已经以央斯基为单位。数据观测历元是 2007 年 5 月 16 日,频率为 43 GHz。

谱线自校准一般是首先对参考通道成图自校准,然后用所求得的相位和幅度的校准信息来校准其它的通道。理想的情况下,应该选用具有简单结构的通道作为参考通道。我们选用 Difmap 软件来进行参考通道成图自校准,因为它在参考通道成图的过程中会自动把校准信息应用到其它的通道。图5.7 中展示了43 和 86 GHz LA-PT 基线上平均的互相关谱。图 5.8 是 43 GHz 上一个参考通道 (第 149 个通道,速度 0.31 km/s) 洁化图的例子。

图 5.7: 43 (左图) 和 86 GHz (右图) LA-PT 基线的互相关谱。

接下来可以对自校准数据进行所有通道的成图。图 5.9 给出了一个速度结构图作为例子。我们在图 5.10 中给出了 43 GHz 上所有历元的多通道图,并同时在附录 B 中总结了所有 43 GHz 10 个历元的总流量图。

East offset (mas)

图 5.8: VX Sgr 43 GHz SiO 参考通道 (第 149 通道,速度 0.31 km/s) 洁化图。图 中亮度峰值为 36.1 Jy/beam,等亮度线为 0.2 × (1,2,4,...,64)。椭圆波束参数 (长轴,短轴的半极大全宽 (FWHM) 和长轴的位置角)为 $\theta_{maj} = 0.86 \text{ mas}, \theta_{min} = 0.19 \text{ mas}, PA=-18.1°。数据观测历元是 2007 年 5 月 16 日。$

图 5.9: 43 GHz SiO 脉泽的速度结构图。中心实心圆标识了中心恒星光球层的 大小,半径为 4.4 mas (Monnier et al., 2004; Chiavassa et al., 2010)。数据观测 历元是 2007 年 5 月 24 日。

	C 10.1 1000 110					
20 15.1 KM	∕s [14.6 KM∕s	14.2 KM/S	13.8 KM∕S	13.3 KM∕S	12.9 KM∕S	12.5 KM∕S
0	÷	+ -	-		+ -	-
					1. S. A. S.	· · ·
-20	Ť	† -	-		† 1	
12.0 KM	/S 11.6 KM/S	11.2 KM/S	10.7 KM/S	10.3 KM/S	9.9 KM/S	9.4 KM/S
20	Ī	Ī			İ i	
а -	Ļ	ļ .			ļ .	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1	1	4.1	18 A. C.	18 A.
-20	- ·	+ -	-		+ .	-
				7 7 VM/S		
20	- 0.0 KH23	- 0.1 KH25 -		7.5 KH25	0.0 KH/3	0.4 KH23
	1.1	1.1			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Sec. 10.
Ø .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1.1	1 N
-20	· ·	- · · -			L 1 .	
				((· · · · ·	· · · · · · · · · · · · · · · · · · ·
20 6.0 KM	/S 5.5 KM/S	5.1 KM/S	4.7 KM/S	4.2 KM/S	3,8 KM/S	3.4 KM/S
1.1	10 A.	All Marine Control of All All All All All All All All All Al	200	1998 - 19	100 Bell	11 A.
0,	+ .	+ -				1.12
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1.1	1. Ph. 1.	12 M 1
-20	t.,	t., i				
2.9 KM	/S 2.5 KM/S	2.0 KM/S	1.6 KM∕S	1.2 KM/S	745.00 M/S	310.52 M/S
2.0	1. 1. 18 1.	1.00	<i>4</i>	1.19	Sec. 2.	10 Mar 19
0		+ ¥ -		· · · ·	e specie	
1.12.1	1. 1. 1. 1.	1. 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1 A 1
-20	÷	+ -			+	· · ·
-123 95 M	/S -558 42 M/S	-992 90 M/S	-1 4 KM/S	-1 9 KM/S	-2 3 KM/8	-2 7 KM/S
20		1	4	s		1
1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.				
-20	_ · ·	Ļ -				-
				1.0.1		
203.2 KM	-3.6 KM/S	4.0 KM/S	-4.5 KM/S	-4.9 KM/S	5.3 KM/S	-5.8 KM/S
			*	* · · · ·	1	
0						
- 20						
- ²						
40 20 0	-20 4	0 20 0 -20 MTLLTODO 050	46	0 20 0 -20	a 40	3 20 0 -21
40 20 0	-20 4 RA 18 08 04. <u>04970</u>	0 20 0 -20 MILLIARC SEC 0000 DEC - <u>22 1</u>) 40 3 28.05189 <u>9</u>	a 20 0-21	3 41	3 20 0 -20

 $5.10\,(1){:}~2007$ May 15

图 5.10: VX Sgr 43 GHz SiO 多通道洁化图,速度范围涵盖 15.1--5.8 km/s。

	CONT: VXSGR :	IS.1 KM∕S IPOU	_ 43G E CAL.I	CL001.1			
20	15.1 KM∕S	14.6 KM∕S	14.2 KM∕S	13.8 KM∕S	13.3 KM∕S	12.9 KM∕S	12.5 KM∕S
0		. 1					
-20		-		. " .			
	12.0 KM/S	11.6 KM/S	11.2 KM/S	10.7 KM/S	10.3 KM∕S	9.9 KM∕S	9.4 KM/S
20							
0		-		-		· .	·
-20	1. 1. 1. A	1.1.1	1.14	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
	9.0 1/1/2			77 KM/8	7 7 KM/S		E A VM/S
20			•	1.1 KH23		2.0 KH20	*•
ø	e de la companya de	. (- (-	4		- 43 - 41	- 44 - 42
	$(-1)^{2} ($	10 A.	a de la companya de la	100	1.1	1.20	
-20 M							
I L 20	é.0 KM∕S	S.5 KM∕S	5.1 KM∕S	4.7 KM∕S	4.2 KM∕S	3.8 KM∕S	3.4 KM∕S
Ī .	1.1		11 A.		- C	a da sera da s	$\sim 10^{-1}$ y \sim
R Ø	1944 - Alexandria (1944) 1945 - Alexandria (1944) 1946 - Alexandria (1944)	14 A.	14		a second	1946 - A. S.	Sec. Sec.
§ -20	· · ·						
Č 20	2.9 KM/S	2.5 KM/S	2.0 KM/S	1.6 KM/S	1.2 KM/S	745.00 M/S	310.52 M/S
20	1.000	1.000	1999 - C.	1 A A	1.22	84 - 14	1990 March 1990
0	Sec. 1.	1. A 1	- 1 J	· • ·		1	- <u>-</u> (
-20		· · ·	· · ·			1 -	· •
	-127 95 M/S	-550 42 M/S	-992 90 M/S	-1 4 KM/S	-1 9 KM/8	-2 7 KM/8	-2 7 KM/S
20	e 11	1 10	1 10			.3	
0	· · ·			•			
	1	1 1 1	1.1	1 - N	•		
-20	· · · · ·	· · · · · · · · · · · · · · · · · · ·			,	,i	ļ,,
20	-3.2 KM/S	-3.6 KM∕S	-4.0 KM/S	-4.5 KM/S	-4.9 KM/S	-5.3 KM/S	-5.8 KM∕S
8	· *				· ·	,	
-20							
4(3 20 0 -20	a 40	20 0 -20	40	0 20 0 -20	40	20 0 -20
	CENTER AT RA	18 08 04.04970	300 DEC -22 1	3 28.051899			
	CONT PEAK FLUX	<pre>< = 3.7065E+0: -01 * (-1, 1, 2)</pre>	I JY∕BEAM 2. 4. 8. 16. 3	2, 64)			

5.10 (2): 2007 May 16

图 5.10: -continued.

	CONT: VXSGR :	IS.1 KM∕S IPOU	_ 43G C CAL.I	CL001.1			
20	15.1 KM∕S	14.6 KM∕S	14.2 KM∕S	13.8 KM∕S	13.3 KM∕S	12.9 KM∕S	12.5 KM∕S .
0							
-20							
20	12.0 KM/S	11.6 KM/S	11.2 KM/S	10.7 KM/S	10.3 KM/S	9.9 KM∕S	9.4 KM/S
20							
0		-				· •,	
-28	1.1.1	1.1.1	• •	4 A	• •		
	9 0 KM/S	8 6 KM/S	8 1 KM/S	7 7 KM/S	7 3 KM/S	6 8 KM/S	6 4 KM/S
20	. 9.6 Kivo .		- 0.1 KH20	· · · ·	1.3 KH23	0.0 KH20	••
ø		. f		- (- 5 M - 4	
		10 A	2 - A.	1.0	1.1	14.5	
-20 M							
I L 20	é.ekm∕s	S.5 KM∕S	5.1 KM∕S	4.7 KM∕S	4.2 KM∕S	3.8 KM∕S	3.4 KM∕S
I .			10 A.		11 A.		
R Ø C	1.	1. A.	14 C	14 N.	14. A	14. 8	Sec. 1
§ -20	· ·						
Č 20	2.9 KM/S	2.5 KM/S	2.0 KM/S	1.6 KM/S	1.2 KM/S	745.00 M/S	310.52 M/S
20	1.505	1.00	4 A	18 A.	1000	1. 1. 1. 1. 1.	1970 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 -
0	1.1.1		- 1 - F	- <u>1</u>	· _ * · ·	1	
-20			, , , , , , , , , , , , , , , , , , ,		• •	· · ·	· · ·
	-127 95 M/S	-550 42 M/S	-992 90 M/S	-1 4 KM/S	-1 9 KM/8	-2 7 KM/8	-2 7 KM/S
20	41 M	e 1	2	.1			_1
ø				•	· · ·		
	1.1	1	1 T	1.1		•	
-20	· · · · ·	· · · · · · · · · · · · · · · · · · ·				,i	· · · · · · · · · · · · · · · · · · ·
20	-3.2 KM/S	-3.6 KM∕S	-4.0 KM/S	-4.5 KM/S	-4.9 KM/S	-5.3 KM/S	-5.8 KM∕S
8	-1				· · · ·		
-20							
4(20 0-20	3 40	20 0 -20	40	20 0-20	40	20 0-20
	CENTER AT RA	18 08 04.04970	MIELIARC SEC 300 DEC -22 1	3 28.051899			
	CONT PEAK FLU> LEVS = 5.000E·	<pre>< = 3.6752E+0: -01 * (-1, 1, 2)</pre>	I JY∕BEAM 2. 4. 8. 16. 3	2, 64)			

5.10 (3): 2007 May 17

图 5.10: -continued.
	CONT: VXSGR 1	15.1 KM∕S IPO	43G D CAL.I	CL001.1			
20	15.1 KM/S	14.6 KM∕S	14.2 KM/S	13.8 KM/S	13.3 KM∕S	12.9 KM∕S_	12.5 KM/S
ø	· ·	+ +					
		1. Sec. 1.				1 A.	1 A 4
-20	· ·	† i			· ·	· ·	i i
	12.0 KM/S	11.6 KM/S	11.2 KM∕S	10.7 KM/S	10.3 KM/S	9.9 KM∕S	9.4 KM∕S
20							
ø							
	100 A. 100 A.		1. A.		100	18 A.	14 July 14
-20	· · ·	+	- ' -				
	9 0 KM/S	8 6 KM/S	8 1 KM/S	7 7 KM/S	7 3 KM/S	6 8 KM/S	5 4 KM/S
20							• .
		1.1	1.1	1	-	N 16	N 10
Ø	1.1			•	1. N		
-20				· · ·	- 1		
M							
Ļ 20	6.0 KM/S	5.5 KM/S	5.1 KM/S	4.7 KM/S	4.2 KM/S	3.8 KM/S	3.4 KM/S
Н	1.1.1	21			2 C	201 - C	1. A.M.
RC Ø	1.15	t 🔩 👘 t			the states of	1.20	1940 - A. C.
0 8 - 20							
E E	ļ						
 20	2.9 KM/S	2.5 KM/S	2.0 KM/S	1.6 KM/S	1.2 KM/S	745.00 M/S .	310.52 M∕S
	1.11	1.1.1	1 A A A A A A A A A A A A A A A A A A A	19 S	10 M 10	87 C	1990 - Carlos Carlos (1990)
0	1. 1. 1. 1.	- , - (- 1		2	$(x, y) \in L^{\infty}$	• •
	14.1	1.1	1.1	10 M	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	• •
-20							
20	-123.95 M/S	-558.42 M/S	-992.90 M∕S	-1.4 KM/S	-1.9 KM∕S	-2.3 KM/S	-2.7 KM/S
20	1 8 M	1. 11 11	1. 1. 1.	1	25 C	_3	_3.
ø		- · ·		· • •	• •	• • •	· · · ·
	1 N 1	10 A 17				•	•
-20		t i					
20	-3.2 KM/S	-3.6 KM/S	-4.0 KM∕S	-4.5 KM/S	-4.9 KM∕S	-5.3 KM/S	-5.8 KM/S
20	1.3	1.1	1.1		10 A.		
0			_				
	•	· •					
-20							
4	0 20 0 -20	a 40	20 0 - 20	40	20 0 - 20) 4(3 20 0 -20
			MILLIARC SEC	2 00 051000			
	CONT PEAK FLUX	(* 08 04.04970) (* = 3.9413 <u>E+0</u>)	300 DEC -22 1. 1 JY∕BEAM	3 28.051899			
	LEUG - E GOOF	A A A A A A		0.043			

5.10(4): 2007 May 18

	CONT: VXSGR 1	.5.1 KM∕S IPO	L 43G E CAL.I	CL001.1			
20	. 15.1 KM∕S	14.6 KM∕S	14.2 KM/S	13.8 KM∕S	13.3 KM∕S	12.9 KM∕S	12.5 KM∕S
0	· ·	i i	i . i				
-20		· ·					
	12.0 KM/S	11.6 KM/S	11.2 KM/S	10.7 KM/S	10.3 KM/S	9.9 KM∕S	9.4 KM∕S
20							
ø							
	1.1.1	1.1.1	1.1.1	₩ s	• •		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
-20							
20	9.0 KM/S	8.6 KM∕S	8.1 KM/S	7.7 KM/S	7.3 KM/S	6.8 KM∕S •	6.4 KM∕S
		1.1	1	- 1		$\sim \sqrt{8}$	A.4
	100	1.1	1.1	1.00	14	1.10	Sec. 1
-20			-	-			
П I L 20	6.0 KM∕S	5.5 KM/S	5.1 KM/S	4.7 KM/S	4.2 KM/S	3.8 КМ∕S	3.4 KM∕S
Ļ	10	22	1994 (1997) 1997 - 1997 (1997)	14 M 1	1990 - A.	100 A	100 C
AR Ø		1 N. 1			1. N. 2. 1. 1. 1.	n a ji ka s	1911 - E. 19
5 -20	1.1		-			1999 - A.	
E C	2 9 VM/C	2 5 VM/C	2 G KM/S		1 2 1/1/2	745 07 M/S	710 56 M/S
20	2.3 KH23	2.3 KH23	2.6 KH26	1.6 KH26	1.2 KH2 5	743.83 11/3	310.30 M/3
ø		· , ·	- <u>-</u>	· • •		1.11	
	1.10	1.6	1. 1. 1. 1.	1 A.	• ·	- • •	- • •
-20						<u> </u>	
20	-123.92 M/S	-558.39 M∕S	-992.86 M∕S	-1.4 KM∕S	-1.9 KM∕S	-2.3 KM∕S	-2.7 KM∕S
	19 - Carlos Carlos (1997)	19 - C	2 ⁴		-2	-3	
0	1.1		'				1. I. I.
-20							
	-3.2 KM/S	-3.6 KM∕S	-4.0 KM/S	-4.5 KM/S	-4.9 KM∕S	-5.3 KM/S	-5.8 KM∕S
20	13	4	+	1.1	10 A.		
0							
-20							
46	20 0 -20	46	MILLIARC SEC	46	20 0-20	41	20 0-20
	CENTER AT RA 1 CONT PEAK <u>FLU</u> X	(8 08 04.04970) <	000 DEC -22 1) 1 JY∕BEAM	3 28.051899			
	LEVS = 5.000E-	01 * (-1) 1) 3	2, 4, 8, 16, 3	2, 64)			

5.10(5): 2007 May 19

	CONT: VXSGR :	15.1 KM∕S IPO	L 43G F CAL.I	CL001.1			
20	15.1 KM∕S	14.6 KM∕S	14.2 KM∕S	13.8 KM/S	13.3 KM∕S	12.9 KM/S	12.5 KM∕S
Ø							
-20							
20	12.0 KM/S	11.6 KM/S	11.2 KM∕S	10.7 KM/S	10.3 KM/S	9.9 км∕з	9.4 KM∕S
0		t <u>.</u> 1				1992 - C	5. S.
-20							
20	9.0 KM/S	8.6 KM∕S	8.1 KM∕S	7.7 KM/S	7.3 KM/S	6.8 KM/S	6.4 KM/S
20		1	1.1.1.1.1.1.1.1	1.1	1100		1.0
0		÷.,			- A		
-20		+ ' +				. 11 s	
M I	6.0 KM∕S	5.5 KM∕S	5.1 KM∕S	4.7 KM/S	4.2 KM/S	3.8 KM/S	3.4 KM∕S
L 20 L I	11	11	4+1		2.0	22	1.7 M 1
AR Ø					- 1	1.1.2	1.1.1
с S -20				· ·	- 19	T.	1 1 A A
E C	2 9 KM/S	2 5 KM/S	2 G KM/S	1 6 KM/8	1 2 KM/28	745 00 M/S	310 52 M/S
20	2.5 60.0	1.4.		. **	112 Kill 0	r	e* *
ø	1. 1.	- , ·	· • • •	· , ·		·	1. 1. 1.
- 20	14.5	1.1.1	1.1	1 - 1	-	•	1 1
-20							
20	-123.95 M/S	-558.42 M/S	-992.90 M/S	-1.4 KM/S	-1.9 KM/S	2.3 KM/S .	-2.7 KM/S
ø	· · · ·	· · ·	· · · ·	· · ·	· · · ·	· · · ·	· · · ·
	1 N 1	10 A 17	10 A 17				· ·
-20		· · ·				· · ·	
20	-3.2 KM/S	-3.6 KM∕S	-4.0 KM∕S	-4.5 KM/S	-4.9 KM∕S	-5.3 KM∕S	-5.8 KM∕S
я		, '	• •				
	•						
-20							
40	20 0 -20	3 40) 20 0 -20 MTLLTARC SEC	40) 20 0-20	40	a 20 0-20
	CENTER AT RA		000 DEC -22 1	3 28.051899			
	LEVS = 5.000E	-01 * (-1, 1, 2	2, 4, 8, 16, 3	2, 64)			

5.10(6): 2007 May 20

	CONT: VXSGR 1	5.1 KM/S IPO	L 43G G CAL.I	CL001.1			
20	15.1 KM∕S	14.6 KM∕S	14.2 KM/S	13.8 KM∕S	13.3 KM∕S	12.9 KM∕S_	12.5 KM∕S
0				· -			· ·
		-	10 C			1	1 + J
-20							
	12.0 KM/S	11.6 KM/S	11.2 KM/S	10.7 KM/S	10.3 KM/S	9.9 KM∕S	9.4 KM∕S
20							
ø							
	1. A.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. A.		18 J.	18 A.
-20		· · ·	· ·				
				7 7 1/10/0	7.7 ////0		
20	9.0 KN/8	0.0 KHZ3	- 0.1 KHZ3	. C.C. KNZ 8	7.3 KH23	0.0 KHZ3	6.4 KHZ3
	1. A.	1	1			1.14	N
0	•	1 A.	1	1. C		11	1.1
- 20		· ·		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
M	i i				i i		
I L 20	é.økm∕s	5.5 KM∕S	5.1 KM∕S	4.7 KM∕S	- 4.2 KM∕S	3.8 KM∕S_	3.4 KM/S
ī		11	24 + 1 (C)	2. A.	14	1.11	
R Ø		- S					1940 - Barris
C	11. C	1		a 🕈 🖓 🖓	and the second second	18 18 18 18 18 18 18 18 18 18 18 18 18 1	28 M 18
S -20							
C	2.9 KM/S	2.5 KM/S	2.0 KM/S	1.6 KM/S	1.2 KM/S	745.00 M/S	310.52 M/S
20	1.686	1.444	4 - 1	18 A.	11.1	1 de 1	a se a la companya de
ю	. <u>,</u> ` .	<u>, , , , , , , , , , , , , , , , , , , </u>				· · · ·	11 - A - A
	1.11	1. 1. 1. 1. 1.	1 1 1 S 1 1 1	1 A 4		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
-20		-	-			· · ·	
	-127.05.04/0	-550 40 M/C	-002 00 M/C	-1.4 KM/C	-1.9. KM/2	-9.7 KM/0	-9.7. KM/0
20	-123.30 H/S	-338.42 11/8	-552.50 M/S	-1.4 KHZS	-1.9 KH28	- 2.3 KHZ3	2.7 KHZ8
	and the second			•			
Ø	1						
-28							
	•						
20	-3.2 KM/S	-3.6 KM/S	-4.0 KM/S	-4.5 KM/S	-4.9 KM/S	-5.3 KM∕S .	-5.8 KM∕S .
	- 28 - C	3	• •	1.1.1		1 (A)	
0							
-20							
40	3 20 0 -20	3 40	a 20 0-20	40	20 0-20) 4(3 20 0 -20
	CENTER AT RA 1	8 08 04 04970	MILLIARC SEC 000 DEC -22 1	3 28 051899			
	CONT PEAK FLUX	< = 3.6639E+0	1 JYZBEAM	20.001000			

5.10(7): 2007 May 21

	CONT: VXSGR 1	IS.1 KM∕S IPO	_ 43G H CAL.I	CL001.1			
20	15.1 KM∕S	14.6 KM∕S	14.2 KM∕S	13.8 KM∕S	13.3 KM∕S	12.9 KM∕S	12.5 KM∕S
0		i i					
-20		-			· ·		
	12.0 KM/S	11.6 KM/S	11.2 KM/S	10.7 KM/S	10.3 KM/S	.9.9 KM∕S	9.4 KM∕S
20							
0							
20	1.1.1.1	1. 1. 1. A.	1. N. 1. 1.	1.1		·	· · · ·
-20							
20	9.0 KM/S	8.6 KM/S	8.1 KM/S	7.7 KM/S	7.3 KM/S	6.8 KM∕S	6.4 KM/S
		1.1	1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. A.	1998 - C. 1998
ø	1. N. 1. S. 1.	1.1	· .	1.1	12.2	1997 - C.	1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -
-20		-					
I I I 20	. 6.0 KM∕S	5.5 KM∕S	5.1 KM∕S	4.7 KM/S	4.2 KM/S	. 3.8 КМ∕S	3.4 KM/S
Ĩ, Ĩ,	1.1	11	al e Silving A	1 - 1	- 14* J. J.	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
AR Ø				a de la composición d		1.14	
с S -20						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
E C						745 00 11 10	710 50 810
20	2.5 KH/ 5	2.3 KH23	2.0 KH25	1.6 KHZ 5	1.2 KH23	743.88 M23	316.32 M/S
0	an the grade second	- 1 S .				a de la presenta de la competencia de la compe	· · · ·
	1.10	1. 1. 18	1.1	a de la composición d	1	1	
-20							
20	-123.95 M/S	-558.42 M∕S	-992.90 M∕s	-1.4 KM∕S	-1.9 KM∕S	-2.3 KM∕S	-2.7 KM/S
	11 M	2	1 A. 1997		- - *	- 25	- 3
0	1 - 1 - 1 - 1 - 1		1.2	11. J. 1		. 1	
-20	· · · · ·	-					
	-3.2 KM/S	-3.6 KM∕S	-4.0 KM/S	-4.5 KM/S	-4.9 KM/S	-5.3 KM/S	-5.8 KM∕S
20					100 A.		
0	· ·	· . ·					-
- 28							
-20							
40	3 20 0 -20	3 40) 20 0-20 MILLIARC SEC	40) 20 0-20	40	3 20 0 -20
	CENTER AT RA 1 CONT PEAK ELUS	18 08 04.049700 < = 3.7871F+0	000 DEC -22 1 1 JY∕EEAM	3 28.051899			
	LEVS = 5.000E-	-01 * (-1, 1, 3	2. 4. 8. 16. 3	2, 64)			

5.10 (8): 2007 May 22

	CONT: VXSGR :	IS.1 KM∕S IPO	43G I CAL.I	CL001.1			
20	15.1 KM∕S	14.6 KM∕S	14.2 KM∕S	13.8 KM∕S	13.3 KM∕S	12.9 KM∕S	12.5 KM∕S
0		Ī					
-20	· ·			· · ·			
20	12.0 KM/S	11.6 KM/S	11.2 KM/S	10.7 KM/S	10.3 KM/S	9.9 KM∕S	9.4 KM/S
20							
0		-					
-20	1.1.1.	1.1.1.1	1 A A		1		
				7 7 KM/S	7 7 KM/S		E A KM/S
20						•••	•.
0	· · · ·			· ! -		1999 - 19	- X.H. - 11
	10 A.	1. A.	1. A.		1.1	1.20	1.1
-20 M	· · · · · ·						
I L 20	6.0 KM/S	5.5 KM/S	5.1 KM/S	4.7 KM/S	4.2 KM∕S	3.8 KM∕S	3.4 KM∕S
HA .							
R ₽ C	i i ha	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	1 A. 1		14. A.	1940 - A. C.	14.1
S -20							
C 20	2.9 KM/S	2.5 KM∕S	2.0 KM/S	1.6 КМ∕S	1.2 KM/S	745.00 M/S	310.52 M/S
	A REAL PROPERTY.	1	1999 - C.		10 M 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	19 A.
0	Sugar 1	1.1.2	1. J.	1. <u>1</u> . 1	?	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
-20							
	-123.95 M/S	-558.42 M/S	-992.90 M/S	-1.4 KM/S	-1.9 KM/S	-2.3 KM/S	-2.7 KM/S
20	1990 - S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 1.	3. 1	25 C	. A	3
0	- 1 - C - S	· · ·		· . · ·		• •	
- 20	2 * *	· · ·			·	·	· ·
20	7.0 KM/0	7.6 KM (0	4.9. 64.0	4 E KM (C	4.0.10	E Z KM/C	
20	-3.2 KM/8	-3.6 KM/S	-4.0 KM/S	-4.5 KM/5	-4.9 KM/8	-5.3 KM/S	5.8 KMZS .
ø		-					
-20	i						
40	3 20 0 -20	3 40	I 20 0 -20 MILLIARC SEC	40	3 20 0 -20	40	3 20 0 -20
	CENTER AT RA :	18 08 04.049700 / = - 7 58705+0	300 DEC -22 1	3 28.051899			
	LEVS = 5.000E	-01 * (-1, 1, 3	2, 4, 8, 16, 3	2, 64)			

5.10 (9): 2007 May 23

1	CONT: VXSGR 1	IS.1 KM∕S IPO	L 43G J CAL2.	ICL001.2			
20	15.1 KM∕S	14.6 КМ∕S	14.2 KM/S	13.8 KM∕S	13.3 KM/S	12.9 KM∕S	12.5 KM∕S
0		-					
					100 A.		
-20		-	-	· -			
	12.0 KM/S	11.6 KM/S	11.2 KM/S	10.7 KM/S	10.3 KM/S	9.9 KM/S	9.4 KM/S
20							
Ő							
-20							
20	9.0 KM/S	8.6 KM∕S	8.1 KM/S	7.7 KM/S	7.3 KM/S	6.8 KM∕S	6.4 KM∕S
	•	1.1	1.1	1.1	1. S.		1 A 4
0		· · ·		• • •	· •.	1.14	
		•	100 B	÷	1.1		
-20							
20	б.0 км∕s	5.5 KM∕S	5.1 KM∕S	4.7 KM/S	4.2 KM∕S	З.8_КМ∕S	3.4 KM∕S
	1.1	44.2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2 * * T	100	11	1.77
0				e al provene e			1.1
	177			1			
-20		-					
	2 9 KM/S	25 KM/S	2 0 KM/S	1 6 KM/8	1 2 KM/S	745 00 M/S	310 52 M/S
20	1.485	5 A # 1	e 1		1. 18 C	10 C	p. 1
	Sec. 1	1.1.1	1. 1. 1. 1. 1. 1.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-	1	
-20							
20	-123.95 M/S	-558.42 M∕S	-992.90 M/S	-1.4 KM/S	-1.9 KM/S	-2.3 KM/S	-2.7 KM/S
	19	- F	-2	-* *	- - 2	3	
0	· · · ·	· · ·	• • •	1. A 1. A 1.	· · ·	· · ·	
		1 T T				·	
-20							
20	-3.2 KM∕S	-з.скм∕х	-4.0 KM/S	-4.5 KM/S	-4.9 KM∕S	-5.3 KM∕S	-5.8 км∕s
	12	¥	· · · · · · · · · · · · · · · · · · ·				
0							
		1 A.					
-20							
40	0 20 0 -29	3 40	3 20 0 -20	40	20 0 - 20	4	3 20 0 -2
			MILLIARC SEC				
	CENTER AT RA 1 CONT PEAK ELUS	18 08 04.04970 / = 3 8385E+0	000 DEC -22 1 1 JYZEFAM	3 28.051899			

5.10 (10): 2007 May 24

5.3 结果与讨论

5.3.1 脉泽形态

为了进一步获取脉泽辐射的参数,我们接下来再对多通道图像 (image cube) 进行分析。首先使用 AIPS SAD 命令对脉泽辐射进行 2 维高斯拟合。在 拟合过程中,我们根据每个谱 (速度) 通道的图像的质量分别对拟合进行限制。 我们选取拟合成份的流量密度下限为图中偏离辐射区域 5 倍 σ_{rms} 和最低负像 素的绝对值二者中的最大值。这些各个速度通道中拟合的空间独立成份通常称 为 "spot",图 5.11 (上) 比较了 MK 单天线总功率谱与 VLBI 观测中所有拟合的 spot 流量叠加的互相关功率谱。图 5.11 (下)是相应的 VLBI 互相关流量与 MK 天线总功率谱在各速度通道的比值。在我们观测的历元,平均而言大约 50% 的脉泽流量被分解掉。

"spot"空间上和速度上具有成团性,构成"feature"。这些"feature"可以 用来描述脉泽辐射的物理性质,而一个"spot"只是一个独立的"feature"成 份在某速度通道内的分量,并不能很好地描述气体团块的物理性质,因而我 们需要把独立的"feature"证认出来。我们把出现在两个以及两个以上连续 速度通道并且角距离小于 0.4 mas (~ 波束的几何平均值)的 spot 认证为一个 "feature"。"feature"的位置及速度由各"spot"流量密度作为权重的平均值决 定。我们把"feature"中"spot"流量密度的极大值取作"feature"的流量密度。 通过这个程序认证的 10 个历元 43 GHz SiO 脉泽"feature"的参数总结在表 C.1 中。图 5.12 中展示了这些脉泽"feature"的空间、速度分布。图中每个点的颜 色代表脉泽"feature"的速度,其大小(半径)正比于流量密度的对数。脉泽 "feature"的位置误差小于图中点的大小。

通过比较脉泽"feature"图(图 5.12)与总强度图(图 B.1)可以看出脉泽 "feature"的分布准确地反映了脉泽辐射的结构。与此同时,在我们所观测的历 元,脉泽辐射存在明显的不对称,大致地集中在东北和西南方向,而在西北方 向没有探测到辐射。Chen et al. (2006)的观测显示在 1999 年质量流失主要集中 在东北方向,而在 1992 年 (Greenhill et al., 1995)和 1994 年 (Doeleman et al., 1998)辐射主要集中在西南方向。这表明质量流失或者恒星周围大气存在明显 的不对称性,并且显示出时变的特征,这种时变的原因目前还不清楚,可能与 恒星光学相位有关。脉泽的速度结构可以用来示踪 CSE 的运动学以及区分包 层的整体运动与质量流失的外流运动。图 5.12 没有显示出连贯的、暗示壳层整

图 5.11: (a) MK 天线总功率谱 (实线) 与 VLBI 总相关流量 (点连线) 的比较。 (b) VLBI 互相关流量与 MK 天线总功率谱在各速度通道的比值。数据观测历 元是 2007 年 5 月 15 日。

体旋转、收缩或膨胀的速度结构特征,但在一些局部区域比如壳层的西南方向 (图 5.9)存在着 (大致沿着径向)速度梯度。Doeleman et al. (1998) 86 GHz 的观 测表明在 1994 年 CSE 的南边存在着东西方向的速度梯度。这样的速度梯度可 能由恒星旋转进而造成脉泽辐射的旋转所引起或者与恒星大气中的分子气体的 系统性运动有关。

注意到脉泽辐射整体上呈一个环形的分布,我们因而对脉泽"feature"的 分布进行了圆拟合。图 5.12 中的大圆显示了拟合的结果。通过拟合的圆心,我 们定义了一个对所有脉泽辐射的共同中心,并由此计算脉泽"feature"到圆心 的平均距离及其标准差。脉泽 feature 到圆心距离的标准差反映了其分布对圆 型分布的偏离,在分布为环的假定条件下,则反映了脉泽壳层结构的厚度。表 5.1 总结了对 10 个历元的拟合结果以及所有历元的平均值。平均而言,43 GHz 脉泽辐射到中心的距离为 13.3 mas (22.6 AU),厚度为 2.2 mas (3.7 AU),因而 远在尘埃包层的内半径 (~0'.06,~100 AU)内 (Danchi et al., 1994)。采用中心 恒星光球层的半径 (R_{*}) 4.4 mas (图 5.12 中蓝绿色实心圆, Monnier et al., 2004; Chiavassa et al., 2010),可知脉泽的分布距离中心恒星为 3.0 R_{*},在此我们假定 射电脉泽辐射和红外辐射具有相同的中心。

我们得到的这个结果与晚型星中 SiO 脉泽距中心恒星的距离 $\frac{\text{Rsio}}{\text{R}_*} \sim 1.5-3.0$ (Kemball, 2007) 一致,也与 Chen et al. (2006) 1999 年测得的 12.5 mas 的结果 一致。Greenhill et al. (1995) 的观测则表明在 1992 年 SiO 脉泽辐射离中心恒 星的半径为 17.5 mas。Chen et al. (2006) 通过 VLBA 观测研究了 VX Sgr SiO (v = 1, J = 1 - 0) 脉泽的运动学,发现 SiO 壳层存在 4.1 km/s (距离 1.7 kpc) 的 内落收缩。Gonidakis et al. (2010) 对 TX Cam SiO 脉泽的监测表明 SiO 壳层存 在着整体的膨胀和收缩运动,与恒星光学相位有关,这或许可以解释 VX Sgr SiO 壳层半径的变化。

图 5.12: 43 GHz SiO 脉泽 "feature" 的空间、速度分布。每个数据点的颜色代表 脉泽 "feature" 的速度,其大小正比于流量密度的对数。脉泽 "feature" 的位置 误差小于数据点的大小。图中的大圆是对脉泽圆形分布的拟合,蓝绿色实心圆 代表了中心恒星光球层的大小,半径为 4.4 mas (Monnier et al., 2004; Chiavassa et al., 2010)。

图 5.12: -continued.

图 5.12: -continued.

表 5.1: 43 GHz SiO 脉泽空间分布的拟合结果总结。第一列为观测历元,第二、 三列为拟合的圆心位置,第四列为脉泽 feature 到圆心的平均距离及标准差, 第五列为各历元拟合的 "feature" 总数。最后一行为 10 个历元的平均值。

Epoch	ΔRa	$\Delta \mathrm{Del}$	Distance	Features
	[mas]	[mas]	[mas]	#
2007/05/15	13.7	1.5	13.2 ± 3.7	71
2007/05/16	13.7	1.4	13.2 ± 1.1	79
2007/05/17	13.6	1.5	13.3 ± 1.5	94
2007/05/18	13.9	1.5	13.3 ± 2.9	83
2007/05/19	13.6	1.5	13.3 ± 1.8	86
2007/05/20	13.5	1.5	13.4 ± 1.6	93
2007/05/21	13.2	1.5	13.5 ± 1.5	98
2007/05/22	13.7	1.6	13.4 ± 2.0	73
2007/05/23	13.8	1.6	13.3 ± 4.2	86
2007/05/24	13.5	1.5	13.4 ± 1.5	89
平均值	13.6	1.5	13.3 ± 2.2^{a}	85

°各历元标准差的平均

5.3.2 43 和 86 GHz SiO 脉泽比较

VX Sgr 86 GHz 的 SiO 脉泽辐射在结构上表现出与 43 GHz 类似的形态 (图 5.13), 但辐射相对较弱, 部分原因可能是由于在 86 GHz 更高的分辨率, 多数 脉泽不够致密。在 LA-PT 基线上 (图 5.7), 43 GHz 跃迁探测到的峰值流量大约 为 86 GHz 跃迁 的 2 倍,与其它晚型星中这两个频率的强度比一致 (典型值2–3 倍, Phillips et al., 2003)。从图 5.13 可以看出,一部分区域出现了两个跃迁,而 很多区域则只有 43 GHz 的脉泽。Phillips et al. (2003)在 R Cas 中观测到类似的 现象。根据辐射抽运模型,对于相当宽范围 SiO 的柱密度和丰度,J = 2 - 1 与 J = 1 - 0 应该具有相当的强度,而碰撞抽运则预言对在一定的柱密度条件下, J = 2 - 1 强于 J = 1 - 0 的辐射。Phillips et al. (2003) 据此认为碰撞激发的作 用不可忽略。

图 5.13: 43 和 86 GHz 的总强度图。43 GHz 图的参数参见表 B.1。86 GHz 图中峰 值为 64.9 Jy/beam,等亮度线为 $3.0 \times (1, 2, 4, ..., 128)$ 。椭圆波束参数 (长轴,短 轴的半极大全宽 (FWHM) 和长轴的位置角)为 $\theta_{maj} = 0.41 \text{ mas}, \theta_{min} = 0.21 \text{ mas},$ PA= -6.2° 。速度范围为 15.1-5.8 km/s (43 GHz)和 -0.6 - -3.2 km/s (86 GHz)。 图中蓝绿色实心圆代表了中心恒星光球层的大小,半径为 4.4 mas (Monnier et al., 2004; Chiavassa et al., 2010)。数据观测历元是 2007 年 5 月 24 日。

研究不同跃迁的相对空间分布在于如何把两个不同频率的辐射正确地对应 起来。由于在相位自校准的过程中源的绝对位置信息丢失,因而直接的比较 往往很困难。比较理想的观测方法有相位参考 (phase referencing),带通综合 (phase tracking) (Yi et al., 2005) 以及频率-相位传递 (frequency-phase transfer Rioja et al., 2008) 等。而这些技术目前在比较研究 SiO J = 2 - 1 = J = 1 - 0 的辐射时都不能轻易实现。毫米波相位参考技术在不远的将来应该可以比较不 同毫米波脉泽辐射的分布 (Broderick et al., 2011)。在自校准的情况下,以往的 研究表明两个频率的比较可以借助于不同跃迁辐射的图心、成份或者辐射结构 的模型 (Desmurs et al., 2000; Phillips et al., 2003; Doeleman et al., 2004)。

注意到两个频率的辐射都呈现出大致类似的环形分布,我们在图 5.13 中把两个图的 (0,0) 位置对应在一起。从图中可以发现两个频率脉泽的环形分布的半径是一致的。尽管如此,86 GHz 探测到辐射不能完全在 43 GHz 的辐射中找到对应。

对于相同振动态不同转动态的跃迁,现有的抽运模型,无论是辐射抽运 (Bujarrabal, 1994a,b)还是碰撞抽运 (Humphreys et al., 2002)均预言它们产生 的条件类似,因而我们预期它们处在包层的相同位置。Soria-Ruiz et al. (2004) 比较了 43 GHz (v = 1, 2, J = 1 - 0)和 86 GHz (v = 1, 2, J = 2 - 1)SiO 脉泽相 对空间分布。他们发现在一些情况下现有的模型,不管是辐射还是碰撞抽运 都不能解释观测结果。比如 IRC+10011的v = 1, J = 1 - 0和J = 2 - 1SiO 谱线有不同的空间分布和辐射区域大小,而J = 2 - 1的辐射位于包层更靠外 的区域。他们考虑不同谱线的重叠来解释观测和理论的分歧。Doeleman et al. (2004)对大质量恒星形成区 ORION BN/KL 的观测表明v = 1, J = 2 - 1的辐 射离中心原恒星比v = 1, J = 1 - 0远,对目前的抽运模型提出挑战。类似地, Soria-Ruiz et al. (2007)对 R Leo 的观测也发现 SiO v = 1, J = 2 - 1辐射分布的 壳层比v = 1, J = 1 - 0更远离中心恒星。

5.4 小结

本章给出了 10 个历元上对红超巨星 VX Sgr CSE 中 SiO 脉泽 43 GHz (v = 1, J = 1 - 0) 和 86 GHz (J = 1 - 2) 的高分辨率研究的一些初步结果。 两个频率的脉泽图像均显示它们存在明显的不对称性,表明质量流失是各向 异性的。通过与之前的观测比较,发现脉泽辐射区域发生了明显的变化,由 1992/1994 年集中在西南方向和 1999 年主要集中在东北方向,在我们的观测历 元,则两个方向都存在明显的辐射。一个有趣的现象是在西北方向,这几次观 测的任何一个历元上都没有探测到辐射。在我们所观测的历元, VX Sgr 中 SiO 脉泽的辐射呈现出环形的分布, 位于 3 个恒星半径处 (22.6 AU), 其厚度约为 3.7 AU。在天尺度上, 我们没有发现这些分布发生明显的变化。比较两个脉泽 跃迁的分布表明它们处在离中心恒星相同的距离, 但两个跃迁的辐射并不重 合。

第六章 总结与展望

随着 VLBI 技术的不断发展,高分辨率的 VLBI 观测研究在天体物理中的 应用已经变得越来越重要,成为研究致密射电源的结构、磁场、物理环境及它 们的变化特性的有效工具。第三章总结了毫米波 VLBI 观测研究的优势、发展 的过程以及现状,展望了毫米波 VLBI 的发展和应用前景。在第四和第五章, 我们分别给出了对连续谱源 (PKS 1749+096) 和谱线源 (VX Sgr) 进行的多频 率多个历元观测研究的结果。我们研究了 PKS 1749+096 中喷流的形态、谱、 核区的磁场及喷流成份的运动学,分析了喷流成份流量变化的原因。利用 VLBA,我们对红超巨星 VX Sgr 中两条 SiO 谱线 (v = 1, J = 1 - 0 和 v=1, J = 2 - 1) 进行了天时间尺度上的观测研究并给出了初步的结果。在今后的工 作中,我们会进一步地分析数据并完成剩余的工作,以期得到更多的结论。我 们注意到尽管目前 SiO 脉泽在 7 毫米 (v = 1, 2; J = 1 - 0) 已有很多工作,在 3 毫米的 VLBI 观测研究仍然比较有限。随着毫米波 VLBI 观测技术的不断完善, 毫米、亚毫米波段谱线的观测与研究将日益成为天文学重要研究课题。

未来 VLBI 技术的发展将会是一个追求更高分辨率 (空间及速度)、更高 灵敏度的过程。从空间分辨率的角度而言,目前广为应用的基于地面的厘米 波 VLBI 可以从两个方面得到提高,即增加基线的长度 (空间 VLBI) 和提高 观测的频率 (毫米波 VLBI)。毫米波 VLBI 具有特定的优势,除了提供更高的 分辨本领之外,还可以探测到喷流更内部区域、减少等离子体的影响。同时 这也为高分辨率研究更多的谱线跃迁提供了可能,例如,晚型星 CES 中 3 种 不同的 SiO 转动跃迁 (v = 1; J = 3 - 2 (129 GHz), J = 2 - 1 (86 GHz),和 J = 1 - 0 (43 GHz) 被认为产生于同一空间区域 (McIntosh & Predmore, 1993), 利用毫米波 VLBI 就可以对它们进行高分辨率的成图研究,从而可以更好地理 解脉泽辐射生存条件及抽运机制。

当然对谱线观测某个特定的跃迁而言,频率是固定的,这时只能靠增加基 线长度来提高分辨率。随着 3 毫米 VLBI 可以进行常规的观测并且伴以视界望 远镜 (Event Horizon Telescope, EHT) 的发展应用,一个非常令人振奋的研究 领域已经逐步向我们敞开。

附录 A PKS 1749+096 的洁化图及模型拟合结果

表 A.1: 图 A.1 所示的 PKS 1749+096 洁化图的参数。表中各列依次为序列号, 观测频率,观测历元,图中亮度峰值,椭圆波束参数 (长轴、短轴的半极大全 宽 (FWHM) 及长轴的位置角),成图噪声水平 (3×σ) 和等亮度线水平 (峰值的 百分比)

				Rest				
ID	ν	Epoch	S_{peak}	Major	Minor	P.A.	$3 \times \sigma$	Contours
	GHz		Jy/beam	mas	mas	deg	mJy/beam	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	8	1999.348	3.90	2.38	1.06	-14.6	1.7	-0.05,0.05,0.1,,51.2
2	8	2001.701	2.83	2.20	1.08	0.0	1.3	0.05,0.1,0.2,,51.2
3	15	1995.575	5.48	1.10	0.50	11.4	3.5	-0.075,0.075,0.15,,76.8
4	15	1996.052	2.62	1.10	0.47	3.2	1.9	-0.075,0.075,0.15,,76.8
5	15	1996.224	0.94	1.08	0.47	-3.2	1.1	-0.15,0.15,0.3,,76.8
6	15	1996.404	0.74	1.20	0.53	4.3	1.4	-0.15,0.15,0.3,,76.8
$\overline{7}$	15	1996.571	0.78	1.15	0.47	-1.9	1.0	-0.15,0.15,0.3,,76.8
8	15	1996.740	0.84	1.18	0.48	-8.5	1.2	-0.15,0.15,0.3,,76.8
9	15	1996.822	1.01	0.93	0.44	-1.6	1.2	-0.1, 0.1, 0.2,, 51.2
10	15	1996.932	1.82	1.29	0.44	-3.6	1.4	-0.075,0.075,0.15,,76.8
11	15	1997.110	2.85	1.06	0.52	-0.8	1.5	-0.05,0.05,0.10,,51.2
12	15	1997.658	3.01	1.04	0.51	3.1	2.2	-0.075,0.075,0.15,,76.8
13	15	1998.849	4.70	1.21	0.53	-4.3	11.2	-0.25,0.25,0.5,,64
14	15	1999.348	3.85	1.40	0.59	-15.7	1.5	-0.05,0.05,0.1,,51.2
15	15	1999.562	3.59	1.67	0.54	-17.8	1.9	-0.05,0.05,0.1,,51.2
16	15	1999.792	3.20	1.34	0.52	-6.5	4.3	0.15, 0.3, 0.6,, 76.8
17	15	1999.978	2.51	1.15	0.50	-9.4	2.9	-0.1,0.1,0.2,,51.2
18	15	1999.989	2.34	1.16	0.56	-8.4	1.7	-0.075,0.075,0.15,,76.8
19	15	2000.347	2.57	1.19	0.50	-4.9	1.5	0.075,0.15,0.3,,76.8
20	15	2000.577	3.34	1.15	0.48	-4.1	1.8	-0.05,0.05,0.1,,51.2
21	15	2000.691	3.20	1.17	0.46	-3.7	1.6	-0.05,0.05,0.1,,51.2
22	15	2000.740	3.14	1.19	0.51	-3.0	1.6	-0.05,0.05,0.1,,51.2
23	15	2001.060	4.15	1.21	0.53	-10.0	2.0	-0.05,0.05,0.1,,51.2
24	15	2001.340	3.62	1.09	0.62	-7.8	1.6	0.05, 0.10, 0.20,, 51.2
25	15	2001.468	2.57	1.15	0.47	-3.0	1.6	-0.075,0.075,0.15,,76.8
26	15	2001.496	2.71	1.18	0.48	-6.1	1.5	-0.05,0.05,0.1,,51.2

				Rest	oring Be	eam	-				
ID	ν	Epoch	S_{peak}	Major	Minor	P.A.	$3 \times \sigma$	Contours			
	GHz		Jy/beam	mas	mas	deg	mJy/beam				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)			
27	15	2001.597	2.37	1.21	0.52	-14.1	1.7	0.1,0.2,0.4,,51.2			
28	15	2001.701	3.60	1.22	0.59	0.1	2.0	-0.05,0.05,0.1,,51.2			
29	15	2001.805	4.67	1.09	0.62	-7.2	1.6	-0.04, 0.04, 0.08,, 81.9			
30	15	2001.838	5.68	1.21	0.54	-2.3	2.1	-0.04, 0.04, 0.08,, 81.9			
31	15	2002.019	4.96	1.22	0.54	-3.1	2.9	-0.075, 0.075, 0.15, , 76.8			
32	15	2002.381	3.13	1.20	0.50	-5.6	2.0	-0.075, 0.075, 0.15,, 76.8			
33	15	2002.416	3.10	1.19	0.55	-8.3	1.0	-0.03,0.03,0.06,,61.4			
34	15	2002.510	2.43	1.10	0.59	-8.3	1.5	-0.075, 0.075, 0.15,, 76.8			
35	15	2002.600	2.79	1.12	0.50	-3.9	1.4	-0.05,0.05,0.1,,51.2			
36	15	2002.973	3.71	1.33	0.57	-12.1	2.0	0.075, 0.15, 0.3, , 76.8			
37	15	2003.099	3.54	1.12	0.52	-3.0	1.2	0.05,0.1,0.2,,51.2			
38	15	2003.737	4.81	1.14	0.55	-3.8	1.8	0.05,0.1,0.2,,51.2			
39	15	2003.822	5.95	1.27	0.51	-10.4	2.0	$-0.035, 0.035, 0.07,,\!71.7$			
40	15	2004.224	4.77	1.12	0.50	-3.7	1.6	-0.04, 0.04, 0.08,, 81.9			
41	15	2004.391	6.26	1.11	0.54	-3.1	3.7	-0.075,0.075,0.15,,76.8			
42	15	2004.448	5.76	1.10	0.53	-6.6	2.1	-0.04, 0.04, 0.08,, 81.9			
43	15	2004.691	3.75	1.11	0.51	-5.9	2.5	-0.075,0.075,0.15,,76.8			
44	15	2005.422	2.44	1.14	0.52	-1.7	1.0	0.05,0.1,0.2,,51.2			
45	15	2005.534	2.76	1.24	0.49	-10.7	2.2	-0.075,0.075,0.15,,76.8			
46	15	2005.668	2.71	1.35	0.50	-15.0	2.1	-0.075,0.075,0.15,,76.8			
47	15	2005.710	2.26	1.15	0.55	-5.1	1.0	-0.05,0.05,0.1,,51.2			
48	22	1999.348	3.37	0.99	0.40	-15.4	2.0	0.075, 0.15, 0.3, , 76.8			
49	22	2001.701	3.70	0.76	0.38	-2.2	3.1	-0.075,0.075,0.15,,76.8			
50	22	2001.937	4.71	0.81	0.38	-6.9	2.8	-0.05,0.05,0.1,,51.2			
51	22	2002.101	4.07	0.79	0.38	-7.6	3.8	-0.1, 0.1, 0.2,, 51.2			
52	22	2002.449	2.35	0.76	0.26	-9.6	3.3	-0.15,0.15,0.3,,76.8			
53	22	2002.658	3.29	0.85	0.35	-8.7	6.6	-0.2,0.2,0.4,,51.2			
54	22	2002.836	3.85	0.77	0.36	-8.9	2.4	0.075, 0.15, 0.3, , 76.8			
55	22	2003.008	3.79	0.94	0.37	-8.2	2.5	-0.075,0.075,0.15,,76.8			
56	22	2003.216	2.92	1.23	0.22	-10.5	3.7	-0.1, 0.1, 0.2,, 51.2			
57	22	2003.479	2.79	0.78	0.23	-9.7	2.9	-0.1, 0.1, 0.2,, 51.2			
58	22	2004.153	3.35	0.83	0.26	-10.4	2.1	0.075, 0.15, 0.3, , 76.8			
59	22	2004.328	5.51	0.84	0.28	-10.1	3.8	-0.075,0.075,0.15,,76.8			
60	22	2004.505	4.69	0.80	0.25	-10.7	4.5	-0.1,0.1,0.2,,51.2			
61	22	2004.683	5.09	0.78	0.25	-9.7	4.6	-0.1,0.1,0.2,,51.2			
62	22	2004.874	2.75	0.74	0.26	-11.2	3.8	-0.15,0.15,0.3,,76.8			
63	22	2005.093	3.67	0.85	0.28	-7.6	2.9	-0.1, 0.1, 0.2,, 51.2			

表 A.1 – continued

	\gtrsim A.1 – continued											
ID	ν	Epoch	S_{peak}	Major	Minor	P.A.	$3 \times \sigma$	Contours				
	GHz		Jy/beam	mas	mas	deg	mJy/beam					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)				
64	43	1999.348	2.50	0.63	0.20	-18.4	2.4	-0.1,0.1,0.2,,51.2				
65	43	2001.701	3.69	0.44	0.22	0.8	3.8	-0.15,0.15,0.3,,76.8				
66	86	1997.288	1.17	0.58	0.06	-4.2	34.4	-3, 3, 6,, 96				

表 A 1 – continued

图 A.1: PKS 1749+096 的洁化图.

图 A.1: -continued.

图 A.1: -continued.

图 A.1: -continued.

图 A.1: -continued.

图 A.1: -continued.

Epoch Id. Flux Co		Core Separation	P.A.	Size	
		[mJy]	[mas]	[degree]	[mas]
		(I) ν	$= 8 \mathrm{GHz}$		
1999.348	D	2112.2 ± 108.0	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$
	C6	1775.1 ± 92.0	0.23 ± 0.10	-31.2 ± 3.7	$0.03 {\pm} 0.01$
	C5	120.0 ± 15.2	$1.39 {\pm} 0.10$	$38.5 {\pm} 4.1$	$1.02 {\pm} 0.10$
	C1+C2	$26.2\pm~7.6$	5.20 ± 0.41	29.9 ± 4.5	$3.08 {\pm} 0.82$
2001.701	D	2404.2 ± 122.1	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$
	C7+C6	488.8 ± 26.2	$0.55 {\pm} 0.10$	-1.1 ± 10.3	$0.30{\pm}0.01$
	C5	$66.2 \pm \ 11.9$	$2.17 {\pm} 0.12$	37.0 ± 3.2	$1.55 {\pm} 0.23$
	C1+C2	10.7 ± 4.4	$8.23 {\pm} 0.81$	$30.8 {\pm} 5.7$	4.15 ± 1.63
		(II) ν	$= 15 \mathrm{GHz}$		
1995.575	D 3981.4±21		$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$
	C4	1552.9 ± 95.2	$0.12 {\pm} 0.05$	$34.9{\pm}16.2$	$0.07 {\pm} 0.01$
	C3	68.4 ± 11.1	$0.81 {\pm} 0.05$	28.9 ± 3.5	$0.28 {\pm} 0.03$
	C2	$9.1{\pm}~1.9$	$2.46 {\pm} 0.05$	21.8 ± 1.2	$0.26 {\pm} 0.04$
	C1	27.2 ± 14.2	$4.34 {\pm} 0.54$	28.4 ± 7.1	$2.12{\pm}1.08$
1996.052	D	1610.9 ± 88.7	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$
	C4	1111.8 ± 57.4	$0.17 {\pm} 0.05$	$33.9{\pm}16.3$	$0.10{\pm}0.01$
	C3	19.5 ± 3.1	$0.96 {\pm} 0.05$	24.8 ± 3.0	$0.53 {\pm} 0.07$
	C2	16.8 ± 3.8	$2.82{\pm}0.07$	32.5 ± 1.4	$0.72 {\pm} 0.14$
	C1	14.3 ± 4.0	$4.57 {\pm} 0.17$	22.9 ± 2.1	$1.32 {\pm} 0.33$
1996.224	D	681.1 ± 36.3	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$
	C4	352.3 ± 19.0	$0.26 {\pm} 0.05$	$34.5 {\pm} 10.8$	$0.10{\pm}0.01$
	C3	17.0 ± 2.3	$0.95 {\pm} 0.05$	26.3 ± 3.0	$0.51{\pm}0.05$
	C2	20.8 ± 5.4	$2.38 {\pm} 0.14$	27.5 ± 3.5	$1.16 {\pm} 0.28$
	C1	$17.5 \pm \ 6.9$	$4.74 {\pm} 0.46$	28.0 ± 5.6	$2.40 {\pm} 0.92$
1996.404	D	646.5 ± 34.6	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.03 {\pm} 0.01$
	C4	126.6 ± 9.6	$0.32 {\pm} 0.05$	31.2 ± 7.1	$0.08 {\pm} 0.01$
	C3	14.2 ± 2.9	$1.06 {\pm} 0.05$	23.3 ± 2.4	$0.56 {\pm} 0.09$

表 A.2: PKS1749+096 的模型拟合结果.

表 A.2 – continued						
Epoch	Id.	Flux	Core Separation	P.A.	Size	
		[mJy]	[mas]	[degree]	[mas]	
	C2	10.2 ± 2.3	$2.70 {\pm} 0.06$	29.8 ± 1.2	$0.61 {\pm} 0.11$	
	C1	$17.1{\pm}~6.7$	$5.33 {\pm} 0.44$	$28.6 {\pm} 4.7$	$2.31 {\pm} 0.88$	
1996.571	D	749.2 ± 44.5	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C4	$53.5 \pm \ 6.0$	$0.39 {\pm} 0.05$	26.1 ± 7.3	$0.16 {\pm} 0.01$	
	C3	9.1 ± 2.1	$1.32 {\pm} 0.06$	27.5 ± 2.7	$0.63 {\pm} 0.12$	
	C2	14.2 ± 3.3	$2.76 {\pm} 0.10$	27.8 ± 2.1	$0.95 {\pm} 0.20$	
	C1	13.4 ± 4.9	$4.90 {\pm} 0.38$	27.7 ± 4.4	$2.08 {\pm} 0.75$	
1996.740	D	835.5 ± 42.6	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.07 {\pm} 0.01$	
	C4	$29.6 \pm\ 2.5$	$0.46 {\pm} 0.05$	26.9 ± 6.2	$0.13 {\pm} 0.01$	
	C2	11.3 ± 2.1	$2.94{\pm}0.05$	29.1 ± 1.0	$0.70 {\pm} 0.11$	
	C1	17.6 ± 5.5	$4.48 {\pm} 0.29$	27.9 ± 3.6	$1.95{\pm}0.58$	
1996.822	D	1012.2 ± 61.2	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.07 {\pm} 0.01$	
	C4	30.6 ± 5.7	$0.42 {\pm} 0.05$	25.2 ± 6.8	$0.32 {\pm} 0.04$	
	C3	$6.1{\pm}~1.9$	$1.27 {\pm} 0.05$	26.8 ± 2.0	$0.37 {\pm} 0.09$	
	C2	13.7 ± 4.1	$2.90 {\pm} 0.15$	26.2 ± 2.9	$1.07 {\pm} 0.30$	
	C1	17.0 ± 9.5	$5.03 {\pm} 0.80$	$26.9 {\pm} 9.0$	$2.88{\pm}1.61$	
1996.932	D	1826.1 ± 92.4	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C4	15.2 ± 3.1	$0.47 {\pm} 0.05$	29.4 ± 3.0	$0.05 {\pm} 0.01$	
	C3	3.3 ± 1.9	$1.40 {\pm} 0.05$	34.3 ± 2.0	$0.14{\pm}0.06$	
	C2	3.8 ± 1.9	$3.15 {\pm} 0.24$	33.2 ± 4.3	$1.12 {\pm} 0.49$	
	C1	19.5 ± 6.3	5.04 ± 0.34	26.5 ± 3.8	$2.20{\pm}0.69$	
1997.110	D	1852.0 ± 95.4	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C5	1027.2 ± 53.6	$0.09 {\pm} 0.05$	34.1 ± 23.8	$0.08 {\pm} 0.01$	
	C4	22.0 ± 3.8	$0.68 {\pm} 0.05$	29.0 ± 4.2	$0.27 {\pm} 0.03$	
	C1+C2	$22.9\pm~7.5$	4.19 ± 0.35	28.5 ± 4.9	$2.27 {\pm} 0.71$	
1997.658	D	2636.1 ± 135.0	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$	
	C5	507.0 ± 28.8	$0.24{\pm}0.05$	42.9 ± 11.7	$0.18 {\pm} 0.01$	
	C4	62.4 ± 5.5	$0.61 {\pm} 0.05$	31.5 ± 4.7	$0.32 {\pm} 0.02$	

		表 A.2	- continued		
Epoch	Id.	Flux	Core Separation	P.A.	Size
		[mJy]	[mas]	[degree]	[mas]
	C1+C2	21.9 ± 9.9	4.29 ± 0.49	26.5 ± 6.5	$2.24{\pm}0.98$
1998.849	D	4850.0 ± 248.5	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.12{\pm}0.01$
	C5	159.1 ± 35.6	$0.97 {\pm} 0.06$	44.7 ± 3.5	$0.65 {\pm} 0.12$
1999.348	D	2121.2 ± 108.4	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.05 {\pm} 0.01$
	C6	1845.1 ± 94.3	$0.22 {\pm} 0.05$	-33.1 ± 12.7	$0.10 {\pm} 0.01$
	C5	$70.2{\pm}\ 7.0$	$1.50 {\pm} 0.05$	38.1 ± 1.9	$0.71 {\pm} 0.05$
	C1+C2	16.5 ± 6.5	5.21 ± 0.51	28.9 ± 5.7	$2.72{\pm}1.02$
1999.562	D	2564.7 ± 128.6	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.04{\pm}0.01$
	C6	1118.3 ± 57.1	$0.28 {\pm} 0.05$	-17.1 ± 10.1	$0.15 {\pm} 0.01$
	C5	$66.5 \pm \ 9.9$	$1.36 {\pm} 0.05$	36.4 ± 2.3	$0.87 {\pm} 0.11$
	C1+C2	15.8 ± 4.7	$5.07 {\pm} 0.21$	31.4 ± 2.4	$1.50 {\pm} 0.41$
1999.792	D	2616.9 ± 136.4	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.05 {\pm} 0.01$
	C6	687.5 ± 49.3	$0.25 {\pm} 0.05$	-11.7 ± 11.3	$0.20{\pm}0.01$
	C5	$64.2{\pm}~20.9$	$1.51 {\pm} 0.19$	35.4 ± 7.4	$1.30 {\pm} 0.39$
1999.978	D	2039.3 ± 108.0	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.03 {\pm} 0.01$
	C6	594.5 ± 35.8	$0.32 {\pm} 0.05$	-8.3 ± 8.8	$0.20{\pm}0.01$
	C5	58.9 ± 15.4	$1.44{\pm}0.15$	$37.3 {\pm} 6.2$	$1.25 {\pm} 0.30$
	C1+C2	$15.9\pm~7.1$	$5.81 {\pm} 0.47$	29.2 ± 4.7	$2.19{\pm}0.94$
1999.989	D	1870.6 ± 110.2	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$
	C6	$597.2 \pm \ 66.2$	$0.32 {\pm} 0.05$	-7.4 ± 8.8	$0.17{\pm}0.01$
	C5	52.3 ± 18.7	$1.54{\pm}0.20$	35.2 ± 7.7	$1.19{\pm}0.40$
	C1+C2	9.8 ± 5.4	$5.66 {\pm} 0.29$	32.6 ± 3.0	$1.15 {\pm} 0.59$
2000.347	D	2107.0 ± 107.3	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.03 {\pm} 0.01$
	C6a	504.3 ± 25.5	$0.31 {\pm} 0.05$	-15.1 ± 9.1	$0.11{\pm}0.01$
	C6b	100.8 ± 7.3	$0.63 {\pm} 0.05$	-0.8 ± 4.5	$0.24{\pm}0.01$
	C5	43.4 ± 10.2	1.81 ± 0.13	38.5 ± 4.3	$1.24 {\pm} 0.27$
	C1+C2	12.1 ± 5.0	$5.88 {\pm} 0.30$	28.7 ± 2.9	$1.53 {\pm} 0.60$
2000.577	D	2825.0 ± 144.4	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$

$\overline{\mathbf{x}}$ A.2 – continued						
Epoch	Id.	Flux	Core Separation	P.A.	Size	
		[mJy]	[mas]	[degree]	[mas]	
	C6a	531.5 ± 27.0	$0.27 {\pm} 0.05$	-19.0 ± 5.3	$0.05 {\pm} 0.01$	
	C6b	160.4 ± 16.1	$0.63 {\pm} 0.05$	-0.6 ± 4.5	$0.18{\pm}0.01$	
	C5	38.6 ± 11.5	$1.99 {\pm} 0.19$	37.3 ± 5.6	$1.39{\pm}0.39$	
	C1+C2	9.9 ± 4.7	$5.28 {\pm} 0.27$	30.2 ± 2.9	$1.21 {\pm} 0.53$	
2000.691	D	2601.6 ± 131.5	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.07 {\pm} 0.01$	
	C6a	731.9 ± 38.0	$0.31 {\pm} 0.05$	-15.7 ± 9.1	$0.12 {\pm} 0.01$	
	C6b	$99.1{\pm}~6.8$	$0.73 {\pm} 0.05$	4.3 ± 3.9	$0.26{\pm}0.01$	
	C5	28.4 ± 7.4	$2.07 {\pm} 0.11$	$39.9 {\pm} 3.0$	$0.90 {\pm} 0.21$	
	C1+C2	$10.9{\pm}~6.0$	$5.39 {\pm} 0.62$	31.2 ± 6.6	$2.34{\pm}1.25$	
2000.740	D	2684.0 ± 134.9	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.04{\pm}0.01$	
	C6a	480.6 ± 25.5	$0.33 {\pm} 0.05$	-20.4 ± 6.0	$0.07 {\pm} 0.01$	
	C6b	171.0 ± 10.2	$0.62 {\pm} 0.05$	$1.0{\pm}4.6$	$0.19{\pm}0.01$	
	C5	40.5 ± 12.4	$1.89 {\pm} 0.19$	36.7 ± 5.9	$1.35 {\pm} 0.38$	
	C1+C2	7.5 ± 3.7	$5.76 {\pm} 0.39$	30.1 ± 3.9	$1.68 {\pm} 0.79$	
2001.060	D	3677.3 ± 184.8	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.05 {\pm} 0.01$	
	C6a	368.8 ± 20.1	$0.25 {\pm} 0.05$	-23.5 ± 9.0	$0.08 {\pm} 0.01$	
	C6b	310.3 ± 19.1	$0.57 {\pm} 0.05$	-4.3 ± 5.0	$0.25 {\pm} 0.01$	
	C1+C2	38.5 ± 11.1	$1.94{\pm}0.19$	38.4 ± 5.7	$1.40 {\pm} 0.38$	
2001.340	D	2887.8 ± 146.7	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.03 {\pm} 0.01$	
	C7	741.6 ± 39.0	$0.21 {\pm} 0.05$	-13.8 ± 13.3	$0.12 {\pm} 0.01$	
	C6	152.4 ± 10.5	$0.66 {\pm} 0.05$	0.1 ± 4.3	$0.28 {\pm} 0.01$	
	C5	31.9 ± 9.4	$1.97 {\pm} 0.19$	$37.8 {\pm} 5.7$	$1.42 {\pm} 0.39$	
	C1+C2	10.2 ± 4.3	5.15 ± 0.50	32.7 ± 5.6	$2.44{\pm}1.00$	
2001.468	D	2211.5 ± 118.0	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.03 {\pm} 0.01$	
	C7	479.0 ± 28.7	$0.36 {\pm} 0.05$	-4.3 ± 7.9	$0.19{\pm}0.01$	
	C6	51.2 ± 5.2	$0.98 {\pm} 0.05$	6.2 ± 2.9	$0.37 {\pm} 0.03$	
	C5	16.3 ± 3.3	$2.41 {\pm} 0.05$	42.2 ± 1.1	$0.56 {\pm} 0.09$	
	C1+C2	10.8 ± 4.0	$4.71 {\pm} 0.21$	32.5 ± 2.5	$1.19 {\pm} 0.41$	

表 A.2 – continued

× A.2 – continued						
Epoch	Id.	Flux	Core Separation	P.A.	Size	
		[mJy]	[mas]	[degree]	[mas]	
2001.496	D	2140.1 ± 108.8	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.03 {\pm} 0.01$	
	C7	609.3 ± 32.6	$0.27 {\pm} 0.05$	-7.7 ± 10.4	$0.14{\pm}0.01$	
	C6	132.8 ± 9.4	$0.74 {\pm} 0.05$	1.1 ± 3.8	$0.35{\pm}0.01$	
	C5	36.2 ± 11.2	$2.07 {\pm} 0.20$	38.3 ± 5.8	$1.40 {\pm} 0.41$	
	C1+C2	8.0 ± 3.4	$6.06 {\pm} 0.35$	27.5 ± 3.3	$1.70 {\pm} 0.70$	
2001.597	D	1862.2 ± 94.5	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	0.03 ± 0.01	
	C7	536.2 ± 29.2	$0.29 {\pm} 0.05$	-7.1 ± 9.7	$0.11{\pm}0.01$	
	C6	158.5 ± 10.0	$0.72 {\pm} 0.05$	1.3 ± 4.0	$0.38{\pm}0.01$	
	C5	$34.1{\pm}~7.6$	$2.39 {\pm} 0.16$	36.0 ± 3.9	$1.55 {\pm} 0.32$	
2001.701	D	3286.4 ± 166.3	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C7	378.4 ± 22.6	$0.37 {\pm} 0.05$	-5.8 ± 7.7	$0.13 {\pm} 0.01$	
	C6	86.4 ± 11.4	$0.92 {\pm} 0.05$	4.1 ± 3.1	$0.41 {\pm} 0.04$	
	C5	$26.1{\pm}~9.4$	$2.36 {\pm} 0.20$	$41.6 {\pm} 5.0$	$1.27 {\pm} 0.41$	
2001.805	D	4414.6 ± 222.1	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C7	329.5 ± 19.8	$0.36 {\pm} 0.05$	-6.4 ± 7.9	$0.16 {\pm} 0.01$	
	C6	87.8 ± 7.3	$0.87 {\pm} 0.05$	5.9 ± 3.3	$0.38 {\pm} 0.02$	
	C5	29.2 ± 6.5	$2.30{\pm}0.12$	40.4 ± 3.0	$1.20 {\pm} 0.24$	
2001.838	D	5424.8 ± 274.7	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$	
	C7	347.0 ± 22.0	$0.38 {\pm} 0.05$	-5.2 ± 7.5	$0.17 {\pm} 0.01$	
	C6	61.3 ± 9.4	$0.99 {\pm} 0.05$	6.4 ± 2.9	$0.35 {\pm} 0.04$	
	C5	$31.4{\pm}~9.7$	$2.45 {\pm} 0.21$	39.5 ± 5.0	$1.49 {\pm} 0.43$	
2002.019	D	4742.5 ± 244.0	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C7	376.4 ± 24.8	$0.50 {\pm} 0.05$	-6.0 ± 5.7	$0.22 {\pm} 0.01$	
	C6	44.5 ± 10.5	$1.33 {\pm} 0.06$	15.1 ± 2.5	$0.60 {\pm} 0.12$	
	C5	15.3 ± 6.9	$2.73 {\pm} 0.21$	50.0 ± 4.3	1.05 ± 0.41	
2002.381	D	2798.2 ± 149.2	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C7	556.0 ± 31.4	$0.47 {\pm} 0.05$	5.5 ± 6.0	$0.20 {\pm} 0.01$	
	Х	$19.0{\pm}~2.9$	$1.80 {\pm} 0.05$	$10.0{\pm}1.6$	$0.12 {\pm} 0.01$	

表 A.2 - continued

表 A.2 – continued						
Epoch	Id.	Flux	Core Separation	P.A.	Size	
		[mJy]	[mas]	[degree]	[mas]	
	C5	18.7 ± 7.8	$3.20 {\pm} 0.25$	44.3 ± 4.6	$1.32 {\pm} 0.51$	
2002.416	D	2644.3 ± 133.5	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.04{\pm}0.01$	
	C7a	622.2 ± 33.2	$0.40 {\pm} 0.05$	6.6 ± 7.1	$0.22 {\pm} 0.01$	
	C7b	$99.5\pm\ 7.6$	$0.84{\pm}0.05$	-1.1 ± 3.4	$0.34{\pm}0.02$	
	C6	20.2 ± 3.6	$1.39 {\pm} 0.05$	18.2 ± 2.0	$0.63 {\pm} 0.09$	
	C5	$19.2\pm\ 3.5$	$2.62 {\pm} 0.09$	43.1 ± 2.0	$1.11{\pm}0.18$	
	C1+C2	6.5 ± 2.6	$5.58 {\pm} 0.37$	28.2 ± 3.9	$1.96 {\pm} 0.75$	
2002.510	D	2251.1 ± 118.4	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.04{\pm}0.01$	
	C7	411.2 ± 27.6	$0.57 {\pm} 0.05$	5.8 ± 5.0	$0.26 {\pm} 0.01$	
	C6	$43.8 \pm \ 8.0$	$1.23 {\pm} 0.07$	8.4 ± 3.2	$0.86 {\pm} 0.13$	
	C5	$12.5\pm~2.9$	$2.70 {\pm} 0.10$	43.8 ± 2.1	$0.96 {\pm} 0.19$	
	C1+C2	10.3 ± 4.0	5.05 ± 0.29	34.0 ± 3.4	$1.61 {\pm} 0.59$	
2002.600	D	2658.4 ± 134.9	$0.00 {\pm} 0.00$	0.0 ± 0.0	$0.03 {\pm} 0.01$	
	C7	329.4 ± 25.7	$0.61 {\pm} 0.05$	$7.6 {\pm} 4.7$	$0.26{\pm}0.01$	
	C6	52.7 ± 8.3	$1.16 {\pm} 0.05$	6.7 ± 2.5	$0.56{\pm}0.07$	
	C5	18.7 ± 5.1	$2.84{\pm}0.17$	48.6 ± 3.4	$1.31 {\pm} 0.33$	
	C1+C2	10.0 ± 4.2	5.13 ± 0.29	25.7 ± 3.3	$1.45 {\pm} 0.58$	
2002.973	D	3642.3 ± 186.9	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.03 {\pm} 0.01$	
	C7	182.8 ± 11.6	$0.65 {\pm} 0.05$	$8.9 {\pm} 4.4$	$0.24{\pm}0.01$	
	C6	82.0 ± 6.5	$1.18 {\pm} 0.05$	10.9 ± 2.4	$0.64{\pm}0.03$	
	C5+C1	$17.5 \pm \ 6.0$	4.53 ± 0.32	$34.6 {\pm} 4.0$	$2.01 {\pm} 0.64$	
2003.099	D	3341.7 ± 179.6	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.03 {\pm} 0.01$	
	C8+C9	219.0 ± 15.0	$0.28 {\pm} 0.05$	17.1 ± 8.1	$0.08{\pm}0.01$	
	C7	166.7 ± 11.2	$0.92 {\pm} 0.05$	10.0 ± 3.1	$0.40{\pm}0.01$	
	C6	19.8 ± 4.2	$1.56 {\pm} 0.07$	$19.6 {\pm} 2.6$	$0.77 {\pm} 0.14$	
	C5+C1	16.2 ± 7.4	4.45 ± 0.63	35.3 ± 8.1	2.82 ± 1.26	
2003.737	D	4786.3 ± 244.2	0.00 ± 0.00	0.0±0.0	0.04 ± 0.01	
	C9	70.8 ± 18.4	$0.46 {\pm} 0.05$	28.9 ± 4.9	$0.08 {\pm} 0.01$	

	表 A.2 – continued							
Epoch	Id.	Flux	Core Separation	P.A.	Size			
		[mJy]	[mas]	[degree]	[mas]			
	C7	101.1 ± 11.0	$1.19 {\pm} 0.05$	14.6 ± 2.4	$0.50 {\pm} 0.04$			
	C5+C1	20.9 ± 8.6	$4.27 {\pm} 0.49$	$33.8 {\pm} 6.6$	$2.49 {\pm} 0.98$			
2003.822	D	5929.2 ± 300.8	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$			
	C9	75.0 ± 12.5	$0.37 {\pm} 0.05$	$25.8 {\pm} 4.6$	$0.06 {\pm} 0.01$			
	C7	103.0 ± 11.9	$1.19 {\pm} 0.05$	16.6 ± 2.4	$0.58{\pm}0.05$			
	C5+C1	24.3 ± 8.7	$3.63 {\pm} 0.35$	$36.9 {\pm} 5.5$	$2.10{\pm}0.70$			
2004.224	D	4650.5 ± 235.4	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.07 {\pm} 0.01$			
	C10	260.7 ± 15.9	$0.33 {\pm} 0.05$	19.7 ± 8.6	$0.18 {\pm} 0.01$			
	C7	$77.6\pm~7.8$	$1.31 {\pm} 0.05$	19.5 ± 2.2	$0.61{\pm}0.05$			
	C5+C1	17.3 ± 7.5	$4.63 {\pm} 0.46$	34.7 ± 5.7	$2.21{\pm}0.92$			
2004.391	D	6142.5 ± 335.0	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.06 {\pm} 0.01$			
	C10	242.8 ± 25.9	$0.35 {\pm} 0.05$	26.6 ± 8.1	$0.12 {\pm} 0.01$			
	C7	$79.1 \pm\ 19.5$	$1.42 {\pm} 0.08$	17.8 ± 3.1	$0.71 {\pm} 0.15$			
	C5+C1	19.3 ± 12.3	4.17 ± 0.83	28.1 ± 11.3	$2.74{\pm}1.66$			
2004.448	D	5680.2 ± 286.0	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.07 {\pm} 0.01$			
	C10	244.9 ± 16.8	$0.37 {\pm} 0.05$	22.5 ± 7.7	$0.28{\pm}0.01$			
	C7	65.7 ± 8.5	$1.34 {\pm} 0.05$	21.6 ± 2.1	$0.58{\pm}0.06$			
	C5+C1	$17.2 \pm \ 6.4$	$3.43 {\pm} 0.31$	38.8 ± 5.2	$1.80 {\pm} 0.62$			
2004.691	D	3655.4 ± 187.9	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$			
	C10	220.5 ± 20.2	$0.41 {\pm} 0.05$	22.9 ± 6.9	$0.24{\pm}0.01$			
	C7	64.3 ± 10.8	$1.29 {\pm} 0.05$	19.7 ± 2.2	$0.55{\pm}0.07$			
	C5+C1	$20.6\pm~9.2$	$4.70 {\pm} 0.76$	30.0 ± 9.2	$3.51{\pm}1.51$			
2005.422	D	2284.4 ± 120.7	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$			
	C12	199.2 ± 17.6	$0.31 {\pm} 0.05$	2.9 ± 9.1	$0.23 {\pm} 0.01$			
	C11	$60.8{\pm}~4.9$	$0.90 {\pm} 0.05$	22.1 ± 3.2	$0.33 {\pm} 0.02$			
	C10	39.1 ± 4.8	$1.58 {\pm} 0.05$	22.1 ± 1.8	$0.76 {\pm} 0.08$			
	C5+C1	$19.8 \pm \ 9.2$	$4.16 {\pm} 0.58$	36.0 ± 8.0	2.57 ± 1.17			
2005.534	D	2726.6 ± 138.6	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$			

主 A 2 continued

${f \gtrsim}~{ m A.2}-{ m continued}$						
Epoch	Id.	Flux	Core Separation	P.A.	Size	
		[mJy]	[mas]	[degree]	[mas]	
	C12	97.1 ± 10.8	$0.51 {\pm} 0.05$	10.1 ± 5.6	$0.30{\pm}0.02$	
	C10 + C11	71.2 ± 13.4	$1.31 {\pm} 0.05$	22.2 ± 2.3	$0.66 {\pm} 0.10$	
	C5+C1	18.3 ± 9.5	4.42 ± 0.72	32.2 ± 9.2	$2.86{\pm}1.43$	
2005.668	D	2657.6 ± 137.0	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.05 {\pm} 0.01$	
	C12	110.1 ± 11.1	$0.45 {\pm} 0.05$	$9.4{\pm}6.3$	$0.25 {\pm} 0.02$	
	C10+C11	72.3 ± 14.0	$1.39 {\pm} 0.06$	23.2 ± 2.5	$0.74{\pm}0.12$	
	C5+C1	12.8 ± 5.6	$5.55 {\pm} 0.43$	32.7 ± 4.4	$2.03 {\pm} 0.85$	
2005.710	D	2179.6 ± 119.0	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.03 {\pm} 0.01$	
	C12	129.0 ± 14.2	$0.40 {\pm} 0.05$	9.3 ± 7.1	$0.21{\pm}0.02$	
	C11	34.1 ± 10.5	$1.12 {\pm} 0.05$	21.1 ± 2.8	$0.45 {\pm} 0.11$	
	C10	39.9 ± 7.9	$1.74 {\pm} 0.09$	25.8 ± 2.9	$1.01{\pm}0.17$	
	C5+C1	12.8 ± 4.7	$5.54 {\pm} 0.46$	34.2 ± 4.8	$2.61{\pm}0.92$	
		(III) ν	$= 22 \mathrm{GHz}$			
1999.348	D	2139.9 ± 115.7	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.05 {\pm} 0.01$	
	C6	1455.4 ± 76.9	$0.23 {\pm} 0.05$	-35.7 ± 12.2	$0.11{\pm}0.01$	
	Х	$31.1{\pm}~8.9$	$0.49 {\pm} 0.05$	2.7 ± 3.5	$0.06{\pm}0.01$	
	C5	54.2 ± 11.1	$1.34{\pm}0.07$	39.1 ± 2.9	$0.74{\pm}0.13$	
2001.701	D	3543.5 ± 179.7	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.04{\pm}0.01$	
	C7	287.4 ± 27.7	$0.34{\pm}0.05$	-8.4 ± 8.3	$0.11{\pm}0.01$	
	C6	93.7 ± 17.5	$0.85 {\pm} 0.05$	1.8 ± 3.3	$0.36{\pm}0.05$	
	C5	21.1 ± 7.4	$2.53 {\pm} 0.12$	41.0 ± 2.8	$0.79 {\pm} 0.25$	
2001.937	D	4532.1 ± 231.8	$0.00 {\pm} 0.00$	$0.0{\pm}0.0$	$0.04{\pm}0.01$	
	C7	339.7 ± 20.5	$0.35 {\pm} 0.05$	-8.3 ± 8.1	$0.18{\pm}0.01$	
	C6	67.3 ± 9.0	$0.89 {\pm} 0.05$	4.7 ± 3.2	$0.38 {\pm} 0.04$	
	C5	20.2 ± 7.9	$2.51 {\pm} 0.20$	$40.0 {\pm} 4.6$	$1.12 {\pm} 0.40$	
2002.101	D	3456.7 ± 183.6	0.00 ± 0.00	0.0±0.0	0.03 ± 0.01	
	C8	$687.1 \pm \ 48.7$	$0.14 {\pm} 0.05$	$13.9 {\pm} 19.6$	$0.12 {\pm} 0.01$	
	C7	121.1 ± 14.6	$0.52 {\pm} 0.05$	-4.7 ± 5.5	$0.14{\pm}0.01$	

94

× A.2 – continued						
Epoch	Id.	Flux	Core Separation	P.A.	Size	
		[mJy]	[mas]	[degree]	[mas]	
	C6	63.1 ± 11.3	$0.98 {\pm} 0.05$	$4.4{\pm}2.9$	$0.41 {\pm} 0.06$	
	C5	$11.8 \pm \ 6.1$	$2.56 {\pm} 0.15$	42.3 ± 3.5	$0.73 {\pm} 0.31$	
2002.449	D	2187.3 ± 114.5	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C8	347.7 ± 34.2	$0.27 {\pm} 0.05$	$9.1{\pm}10.4$	$0.19{\pm}0.01$	
	C7	225.0 ± 35.1	$0.65 {\pm} 0.05$	5.2 ± 4.4	$0.32 {\pm} 0.04$	
	C5	10.9 ± 6.2	2.47 ± 0.33	43.7 ± 7.7	$1.30{\pm}0.67$	
2002.658	D	3312.1 ± 238.4	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C7	233.7 ± 37.5	$0.67 {\pm} 0.05$	8.5 ± 4.2	$0.33 {\pm} 0.04$	
2002.836	D	3817.8 ± 201.5	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$	
	C8	112.8 ± 8.2	$0.36 {\pm} 0.05$	8.6 ± 5.5	$0.07 {\pm} 0.01$	
	C7	146.7 ± 20.7	$0.85 {\pm} 0.05$	8.2 ± 3.3	$0.45{\pm}0.05$	
	C5	10.9 ± 4.2	$2.63 {\pm} 0.11$	42.3 ± 2.5	$0.64 {\pm} 0.23$	
2003.008	D	3760.3 ± 214.0	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$	
	C8	116.5 ± 14.4	$0.40 {\pm} 0.05$	13.0 ± 7.1	$0.14{\pm}0.01$	
	C7	$98.7 \pm \ 8.5$	$0.96 {\pm} 0.05$	8.5 ± 3.0	$0.35{\pm}0.02$	
	C5	12.6 ± 4.1	$3.02 {\pm} 0.08$	$31.6 {\pm} 1.6$	$0.58 {\pm} 0.16$	
2003.216	D	2985.2 ± 154.8	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C8	58.2 ± 13.8	$0.42 {\pm} 0.05$	14.2 ± 2.7	$0.04{\pm}0.01$	
	C7	105.5 ± 15.6	$1.01 {\pm} 0.05$	10.3 ± 2.8	$0.46 {\pm} 0.06$	
2003.479	D	2797.8 ± 164.1	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.03 {\pm} 0.01$	
	C9	94.5 ± 13.7	$0.30 {\pm} 0.05$	23.2 ± 9.4	$0.10 {\pm} 0.01$	
	C7	113.7 ± 17.5	$1.03 {\pm} 0.05$	12.7 ± 2.8	$0.50{\pm}0.07$	
2004.153	D	$3253.4{\pm}191.2$	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.05 {\pm} 0.01$	
	C10	$311.0 \pm \ 30.8$	$0.22 {\pm} 0.05$	16.8 ± 12.7	$0.14{\pm}0.01$	
	C9	$58.2 \pm \ 8.0$	$1.00 {\pm} 0.05$	$19.9 {\pm} 2.8$	$0.49 {\pm} 0.06$	
2004.328	D	5616.1 ± 382.1	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.07 {\pm} 0.01$	
	C10	233.0 ± 42.9	$0.27 {\pm} 0.05$	$23.0{\pm}10.4$	$0.20 {\pm} 0.03$	
	C9	59.3 ± 14.9	$1.15 {\pm} 0.07$	20.5 ± 3.5	$0.62 {\pm} 0.14$	

表 A.2 – continued
		表 A.2	- continued		
Epoch	Id.	Flux	Core Separation	P.A.	Size
		[mJy]	[mas]	[degree]	[mas]
2004.505	D	4925.6 ± 254.9	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.08 {\pm} 0.01$
	C10	169.6 ± 25.5	$0.39 {\pm} 0.05$	26.9 ± 7.3	$0.21 {\pm} 0.02$
	C9	$31.3\pm$ 8.7	$1.42 {\pm} 0.05$	25.3 ± 2.0	$0.32 {\pm} 0.08$
2004.683	D	4005.9 ± 230.8	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.06 {\pm} 0.01$
	C11	1386.8 ± 98.0	$0.12 {\pm} 0.05$	$7.0{\pm}18.3$	$0.08 {\pm} 0.01$
	C10	161.2 ± 30.4	$0.52 {\pm} 0.05$	25.3 ± 5.5	$0.15 {\pm} 0.02$
	C9	51.6 ± 11.7	$1.54{\pm}0.05$	20.0 ± 1.9	$0.51{\pm}0.10$
2004.874	D	2789.7 ± 160.9	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.07 {\pm} 0.01$
	C11	$184.0\pm\ 21.9$	$0.31 {\pm} 0.05$	15.1 ± 9.1	$0.22 {\pm} 0.02$
	C10	47.6 ± 17.3	$1.04 {\pm} 0.10$	24.2 ± 5.3	$0.58 {\pm} 0.19$
2005.093	D	3758.5 ± 198.4	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.06 {\pm} 0.01$
	C11	99.7 ± 11.3	$0.50 {\pm} 0.05$	$14.6 {\pm} 5.7$	$0.26 {\pm} 0.02$
	C10	38.3 ± 7.8	$1.07 {\pm} 0.05$	22.8 ± 2.7	$0.41{\pm}0.07$
		(IV) ν	$=43\mathrm{GHz}$		
1999.348	D	$1916.8 {\pm} 193.4$	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.03 {\pm} 0.01$
	C6	1121.5 ± 113.3	$0.24{\pm}0.03$	-35.5 ± 7.1	$0.11 {\pm} 0.01$
	х	$45.8 \pm \ 6.5$	$0.36 {\pm} 0.03$	-0.4 ± 4.7	$0.10 {\pm} 0.01$
	C5	39.2 ± 10.7	1.11 ± 0.11	36.5 ± 5.8	$0.89 {\pm} 0.22$
2001.701	D	3747.4 ± 376.6	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.04{\pm}0.01$
	C7	160.8 ± 19.3	$0.36 {\pm} 0.03$	-7.8 ± 4.7	$0.12 {\pm} 0.01$
	C6	$60.6 \pm \ 18.6$	$0.77 {\pm} 0.04$	5.2 ± 3.1	$0.33 {\pm} 0.08$
		(V) ν	$= 86 \mathrm{GHz}$		
1997.288	D	1560.0 ± 316.0	$0.00 {\pm} 0.00$	$0.0 {\pm} 0.0$	$0.06 {\pm} 0.01$
	C5	390.0 ± 111.7	$0.12 {\pm} 0.02$	21.6 ± 9.5	$0.05 {\pm} 0.01$
2000.822	D	1740.0 ± 362.0	0.00±0.00	0.0±0.0	0.05 ± 0.01

图 B.1: 43 GHz SiO 脉泽的总流量图。图的参数在表 B.1 中给出。

图 B.1: -continued.

图 B.1: -continued.

表 B.1: 图 B.1 中 SiO 脉泽速度积分总流量图的参数。表中各列依次为 (1) 观测历元, (2) 观测频率, (3) 图中亮度峰值 (4), (5), 和 (6) 为椭圆波束参数 (长轴, 短轴的半极大全宽 (FWHM) 和长轴的位置角), (7) 等亮度线水平。

			Rest	oring Be	eam	
Epoch	ν	S_{peak}	Major	Minor	P.A.	Levels
	GHz	Jy/beam	mas	mas	deg	Jy/beam
(1)	(2)	(3)	(4)	(5)	(6)	(7)
2007/05/15	43	144.9	0.88	0.21	-15.0	$5.0 \times (1, 2, 4,, 128)$
2007/05/16	43	161.4	0.89	0.21	-15.7	$5.0 \times (1, 2, 4,, 128)$
2007/05/17	43	161.3	0.59	0.23	-2.0	$5.0 \times (1, 2, 4,, 128)$
2007/05/18	43	179.2	0.76	0.24	8.0	$5.0 \times (1, 2, 4,, 128)$
2007/05/19	43	177.9	0.56	0.26	-0.7	$5.0 \times (1, 2, 4,, 128)$
2007/05/20	43	172.7	0.61	0.24	-2.7	$5.0 \times (1, 2, 4,, 128)$
2007/05/21	43	160.2	0.61	0.22	0.6	$5.0 \times (1, 2, 4,, 128)$
2007/05/22	43	157.7	0.59	0.21	2.6	$5.0 \times (1, 2, 4,, 128)$
2007/05/23	43	155.4	0.61	0.21	2.4	$5.0 \times (1, 2, 4,, 128)$
2007/05/24	43	154.9	0.79	0.18	-15.6	$5.0 \times (1, 2, 4,, 128)$

附录 C VX Sgr 43 GHz SiO 脉泽 "feature" 的参数

表 C.1: 43 GHz SiO 脉泽 "feature" 的参数. 表中各列依次为 "feature" 的代号 (ID), 流量密度 (Flux) 及误差 (σ_{flux}), 在天空平面的相对位置及其误差 (x, σ_x , y, σ_y), 速度 (v) 及误差 (σ_v)

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	/s]
			(1) Epc	och: 200	7/05/15			
1	17.501	0.161	7.845	0.025	-11.827	0.022	12.658	0.252
2	3.465	0.128	17.041	0.040	-11.387	0.142	12.352	0.260
3	0.402	0.128	7.949	0.014	-11.206	0.008	12.261	0.217
4	1.692	0.149	8.084	0.019	-11.081	0.066	9.794	0.283
5	5.215	0.149	16.988	0.009	-11.186	0.011	11.298	0.237
6	1.080	0.149	16.861	0.031	-10.799	0.039	8.808	0.215
7	1.620	0.132	1.399	0.014	-14.947	0.029	11.911	0.231
8	10.671	0.110	16.962	0.007	-10.665	0.012	7.012	0.212
9	7.528	0.128	18.267	0.022	-5.003	0.015	9.218	0.233
10	1.038	0.134	13.948	0.010	-7.723	0.037	9.446	0.245
11	0.965	0.120	18.815	0.011	-13.048	0.051	9.169	0.212
12	3.155	0.104	18.722	0.008	-13.227	0.037	7.116	0.273
13	7.799	0.109	27.881	0.008	2.452	0.011	8.095	0.188
14	1.596	0.131	26.477	0.019	7.649	0.033	8.426	0.214
15	1.744	0.124	27.659	0.013	5.413	0.036	8.203	0.217
16	4.493	0.153	27.982	0.010	-1.780	0.038	7.596	0.236
17	1.612	0.143	11.311	0.016	12.363	0.085	7.481	0.257
18	1.373	0.177	8.503	0.028	-10.254	0.073	7.079	0.264
19	6.203	0.158	25.014	0.022	-3.533	0.052	6.434	0.233
20	0.500	0.055	16.988	0.013	-10.098	0.004	7.039	0.217
21	0.938	0.142	20.031	0.016	9.616	0.046	7.032	0.217

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	у	$\sigma_{ m y}$	v	σ_v
	[J <u>y</u>	y]	[ma	us]	[ma	us]	[km	n/s]
22	2.929	0.177	28.118	0.055	-1.407	0.031	6.359	0.239
23	0.936	0.138	26.958	0.026	6.463	0.060	6.742	0.231
24	4.140	0.117	23.596	0.050	-8.465	0.032	6.386	0.221
25	3.043	0.137	17.093	0.009	14.215	0.033	6.264	0.225
26	1.999	0.116	19.610	0.025	6.290	0.043	6.175	0.232
27	10.217	0.206	11.809	0.015	13.208	0.057	4.891	0.255
28	13.091	0.262	20.851	0.042	-8.086	0.030	4.913	0.206
29	1.466	0.120	18.646	0.013	6.531	0.039	5.490	0.218
30	15.397	0.302	22.041	0.035	-8.403	0.029	4.416	0.251
31	15.270	0.302	17.444	0.043	13.568	0.031	4.187	0.232
32	46.891	0.230	12.336	0.012	13.538	0.027	3.597	0.224
33	1.524	0.136	21.148	0.015	8.071	0.060	5.238	0.206
34	6.520	0.319	17.064	0.059	13.404	0.059	4.167	0.350
35	16.535	0.286	22.272	0.015	-8.605	0.034	3.905	0.188
36	2.672	0.099	12.423	0.006	14.174	0.040	3.707	0.233
37	11.242	0.099	12.533	0.008	13.959	0.037	2.120	0.237
38	11.053	0.173	11.856	0.006	13.700	0.025	3.309	0.244
39	10.446	0.234	0.551	0.027	-3.140	0.025	2.444	0.265
40	7.592	0.243	-0.554	0.018	-0.539	0.042	3.070	0.208
41	9.295	0.243	-0.412	0.015	-0.371	0.041	1.419	0.216
42	4.756	0.212	6.189	0.026	-7.617	0.041	2.587	0.236
43	8.268	0.149	17.074	0.014	-8.412	0.012	2.459	0.217
44	23.663	0.174	10.878	0.011	15.238	0.021	2.191	0.199
45	0.586	0.174	12.501	0.017	14.508	0.009	2.717	0.216
46	2.156	0.174	18.298	0.011	-10.398	0.014	2.720	0.216
47	1.168	0.174	23.905	0.010	14.853	0.027	2.713	0.217
48	1.569	0.174	6.145	0.014	13.927	0.047	2.729	0.215
49	3.170	0.115	10.519	0.011	15.075	0.029	1.387	0.322
50	4.991	0.160	5.623	0.008	-9.116	0.036	1.179	0.257

表 C.1 – continued

ID	Flue		- 					
ID	r iux	$\sigma_{\rm Flux}$	Хг	$\sigma_{\rm x}$	У	$\sigma_{\rm y}$	<i>U</i>	σ_v
	[J]	y]	[ma		lma	s	[km	[/S]
51	51.868	0.155	0.003	0.060	-0.038	0.027	0.587	0.300
52	4.991	0.155	0.044	0.021	0.982	0.016	1.413	0.217
53	2.382	0.109	-0.055	0.020	-0.690	0.040	0.506	0.287
54	1.480	0.060	-0.113	0.089	0.606	0.033	0.847	0.292
55	6.849	0.217	7.667	0.057	-9.058	0.038	0.254	0.278
56	11.091	0.192	6.339	0.017	-8.909	0.018	0.160	0.250
57	4.481	0.223	7.511	0.021	-9.215	0.026	0.384	0.263
58	4.473	0.223	7.443	0.020	-9.065	0.022	-1.124	0.199
59	17.166	0.158	23.006	0.021	13.982	0.022	-0.459	0.249
60	2.752	0.223	24.360	0.022	12.559	0.034	0.430	0.266
61	8.385	0.152	21.380	0.021	-10.978	0.040	-0.169	0.267
62	1.227	0.166	25.543	0.035	10.060	0.052	0.690	0.232
63	14.268	0.214	-0.260	0.037	-0.054	0.021	-0.892	0.350
64	3.712	0.122	25.418	0.010	12.170	0.016	0.097	0.212
65	1.033	0.066	0.009	0.008	0.595	0.042	-0.363	0.216
66	0.620	0.066	23.044	0.044	14.576	0.006	-0.734	0.213
67	20.158	0.066	-0.038	0.011	0.076	0.022	-1.098	0.186
68	10.255	0.128	25.787	0.014	9.745	0.024	-1.896	0.255
69	7.842	0.331	26.485	0.022	9.822	0.020	-2.116	0.260
70	3.986	0.126	22.299	0.019	11.900	0.017	-3.093	0.282
71	1.803	0.130	22.767	0.015	11.106	0.036	-2.510	0.220
72	1.571	0.130	30.908	0.005	-9.033	0.030	-2.442	0.206
73	2.993	0.130	22.731	0.070	14.207	0.068	-3.306	0.204
74	4.240	0.114	14.117	0.021	11.209	0.017	-4.856	0.220
			(2) Epc	och: 200	7/05/16			
1	2.354	0.124	7.742	0.031	-11.998	0.040	14.333	0.194
2	0.919	0.043	7.841	0.277	-12.287	0.146	12.688	0.217
3	1.002	0.111	10.109	0.015	-12.496	0.039	13.830	0.238
4	19.632	0.203	7.873	0.028	-11.814	0.022	12.723	0.267

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	У	σ_{y}	v	σ_v
	[Jy	y]	[ma	us]	[ma	us]	[km	/s]
5	0.930	0.060	7.784	0.044	-11.125	0.055	12.376	0.268
6	1.703	0.102	1.428	0.011	-14.911	0.025	11.733	0.228
7	6.340	0.117	17.032	0.003	-11.186	0.007	11.788	0.214
8	0.922	0.040	17.155	0.005	-11.244	0.014	6.884	0.214
9	0.544	0.070	17.247	0.018	-11.899	0.010	11.784	0.213
10	8.551	0.118	18.306	0.012	-4.986	0.015	9.260	0.234
11	1.202	0.113	18.858	0.010	-13.079	0.028	9.171	0.212
12	3.645	0.106	18.760	0.005	-13.288	0.015	7.389	0.251
13	8.848	0.101	27.920	0.008	2.474	0.017	8.061	0.185
14	4.025	0.118	28.031	0.016	-1.764	0.025	8.064	0.222
15	1.185	0.118	27.838	0.022	-1.437	0.041	4.741	0.247
16	2.672	0.169	27.703	0.019	5.477	0.046	8.320	0.216
17	1.156	0.057	27.813	0.007	3.070	0.034	8.260	0.199
18	0.594	0.057	28.074	0.008	1.881	0.003	7.957	0.213
19	2.335	0.128	11.336	0.010	12.301	0.024	7.871	0.213
20	11.541	0.102	16.996	0.006	-10.637	0.016	7.044	0.222
21	1.268	0.058	16.874	0.007	-10.002	0.005	6.984	0.227
22	7.407	0.168	25.032	0.020	-3.505	0.065	6.557	0.233
23	1.483	0.107	26.992	0.016	6.460	0.029	6.815	0.244
24	5.615	0.123	23.623	0.039	-8.454	0.011	6.398	0.224
25	2.678	0.121	19.648	0.022	6.318	0.039	6.147	0.242
26	2.074	0.128	18.677	0.008	6.580	0.033	5.510	0.212
27	14.341	0.154	20.938	0.028	-8.088	0.016	4.807	0.248
28	16.145	0.206	11.840	0.017	13.276	0.091	4.747	0.272
29	8.556	0.175	21.960	0.018	-8.403	0.031	5.213	0.196
30	52.119	0.173	12.356	0.014	13.529	0.022	3.948	0.230
31	3.416	0.224	20.424	0.018	-8.144	0.041	4.844	0.216
32	1.723	0.224	21.232	0.021	8.015	0.043	4.912	0.214
33	1.576	0.144	4.826	0.014	15.033	0.063	4.706	0.233

表 C.1 – continued

			• •					
ID	Flux	$\sigma_{ m Flux}$	х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	$[J_{\underline{y}}]$	v]	[ma	us]	[ma	s]	[km	/s]
34	11.566	0.107	12.278	0.011	14.019	0.092	3.208	0.207
35	14.793	0.107	12.488	0.063	13.991	0.058	1.852	0.206
36	2.622	0.071	12.525	0.011	12.816	0.012	3.862	0.244
37	15.537	0.321	17.292	0.022	13.520	0.026	3.747	0.227
38	4.307	0.321	17.736	0.010	13.770	0.018	3.697	0.262
39	1.631	0.321	16.858	0.026	13.628	0.038	4.080	0.204
40	1.701	0.183	17.970	0.021	-10.196	0.038	3.954	0.212
41	12.509	0.183	11.900	0.007	13.732	0.026	3.352	0.256
42	10.686	0.147	0.600	0.035	-3.107	0.022	2.658	0.253
43	8.792	0.119	17.111	0.011	-8.394	0.013	2.443	0.230
44	24.537	0.135	10.867	0.047	15.232	0.016	2.097	0.245
45	5.962	0.165	6.231	0.033	-7.594	0.039	2.467	0.226
46	0.933	0.054	11.069	0.012	14.482	0.004	2.248	0.217
47	0.740	0.054	17.296	0.007	-9.040	0.004	2.295	0.215
48	0.908	0.054	16.985	0.012	-7.757	0.005	2.287	0.216
49	1.948	0.103	10.558	0.014	15.125	0.038	2.252	0.217
50	4.416	0.138	10.531	0.010	15.119	0.023	0.201	0.265
51	0.475	0.050	0.709	0.018	-3.823	0.006	2.264	0.217
52	5.281	0.050	0.490	0.009	-3.169	0.024	1.364	0.227
53	7.185	0.134	5.656	0.008	-9.153	0.027	0.916	0.244
54	1.451	0.134	5.714	0.110	-8.628	0.095	1.498	0.192
55	3.365	0.134	7.897	0.008	-8.985	0.026	1.321	0.204
56	3.928	0.201	24.427	0.026	12.630	0.028	0.691	0.238
57	10.396	0.134	21.403	0.027	-10.984	0.029	-0.210	0.254
58	13.188	0.181	6.383	0.004	-8.835	0.006	0.500	0.215
59	19.689	0.157	23.050	0.028	14.025	0.014	-0.303	0.245
60	5.865	0.120	25.460	0.012	12.226	0.011	0.163	0.215
61	55.708	0.120	-0.053	0.019	0.024	0.012	-0.462	0.281
62	1.557	0.120	11.514	0.010	13.921	0.026	0.123	0.215

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	x	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	/s]
63	0.950	0.068	22.880	0.012	14.819	0.054	0.027	0.207
64	2.705	0.068	0.128	0.028	-0.713	0.046	-0.446	0.255
65	1.300	0.064	23.196	0.010	13.305	0.009	-0.580	0.224
66	0.983	0.077	21.309	0.026	-10.349	0.038	-0.574	0.228
67	1.449	0.077	-0.121	0.021	0.812	0.019	-0.748	0.216
68	0.609	0.077	21.616	0.017	-11.692	0.025	-0.722	0.211
69	0.717	0.077	29.303	0.020	7.128	0.063	-0.738	0.214
70	7.222	0.122	26.546	0.049	9.842	0.054	-1.525	0.238
71	12.377	0.164	25.829	0.016	9.791	0.018	-1.949	0.260
72	0.822	0.048	26.001	0.030	9.093	0.032	-1.816	0.236
73	1.075	0.101	25.639	0.017	10.317	0.103	-1.694	0.212
74	0.339	0.101	26.760	0.032	9.138	0.017	-1.644	0.217
75	1.827	0.113	30.963	0.026	-8.939	0.051	-2.580	0.269
76	4.311	0.113	22.318	0.007	11.912	0.018	-3.849	0.225
77	4.673	0.112	14.139	0.027	11.224	0.018	-4.809	0.223
78	1.268	0.112	9.078	0.010	16.035	0.029	-4.644	0.213
79	0.342	0.112	14.038	0.012	11.878	0.010	-5.116	0.217
			(3) Epc	och: 200	7/05/17			
1	12.419	0.132	7.815	0.012	-11.896	0.034	13.561	0.207
2	0.875	0.117	10.143	0.015	-12.550	0.059	14.168	0.230
3	19.173	0.117	7.922	0.027	-11.822	0.018	12.439	0.247
4	5.442	0.118	17.080	0.018	-11.261	0.055	11.635	0.282
5	10.363	0.102	17.010	0.012	-10.725	0.047	7.642	0.393
6	0.511	0.102	8.048	0.034	-11.129	0.031	11.842	0.216
7	1.437	0.146	8.107	0.039	-11.058	0.055	9.451	0.316
8	1.314	0.104	1.445	0.018	-14.883	0.049	11.700	0.225
9	8.037	0.112	18.314	0.014	-5.001	0.022	9.210	0.223
10	1.353	0.133	13.986	0.016	-7.662	0.034	9.443	0.243
11	0.792	0.133	18.875	0.010	-13.098	0.023	9.225	0.217

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	$[J_{2}]$	y]	[ma	us]	[ma	s]	[km	l/s]
12	3.213	0.099	18.770	0.012	-13.258	0.029	7.058	0.271
13	8.031	0.099	27.946	0.008	2.460	0.008	8.079	0.200
14	1.180	0.149	10.788	0.056	12.151	0.106	8.580	0.235
15	2.017	0.139	26.539	0.012	7.605	0.040	8.305	0.239
16	1.820	0.118	27.703	0.013	5.392	0.037	8.323	0.230
17	3.705	0.186	28.058	0.020	-1.746	0.044	7.608	0.268
18	2.280	0.198	11.337	0.025	12.339	0.069	7.693	0.241
19	0.723	0.059	17.041	0.009	-10.083	0.007	7.016	0.215
20	4.892	0.123	25.091	0.016	-3.449	0.051	6.483	0.265
21	1.312	0.104	27.004	0.014	6.456	0.027	6.828	0.242
22	1.771	0.104	8.462	0.083	-10.196	0.035	7.094	0.211
23	0.862	0.104	21.496	0.023	7.320	0.058	7.053	0.217
24	0.964	0.117	8.807	0.017	-11.284	0.051	7.020	0.216
25	5.134	0.120	23.646	0.035	-8.465	0.022	6.424	0.225
26	4.115	0.285	28.192	0.049	-1.292	0.041	5.383	0.388
27	4.182	0.147	17.135	0.011	14.215	0.020	6.088	0.241
28	2.487	0.122	19.684	0.017	6.321	0.034	6.168	0.238
29	2.981	0.220	26.063	0.039	5.125	0.044	6.333	0.229
30	3.210	0.220	24.967	0.003	-3.792	0.030	6.225	0.211
31	10.734	0.143	11.854	0.012	13.236	0.065	4.977	0.250
32	1.221	0.143	22.807	0.060	5.445	0.034	6.215	0.213
33	2.497	0.145	17.636	0.009	13.565	0.018	5.697	0.213
34	17.474	0.219	17.487	0.021	13.573	0.026	3.912	0.229
35	2.832	0.112	17.130	0.006	13.394	0.012	5.598	0.163
36	2.300	0.112	16.964	0.022	13.586	0.030	3.428	0.237
37	14.513	0.200	20.949	0.030	-8.116	0.026	4.807	0.237
38	1.756	0.116	18.706	0.009	6.536	0.035	5.462	0.206
39	0.700	0.145	17.099	0.101	15.011	0.073	5.705	0.214
40	7.377	0.162	21.883	0.078	-8.394	0.048	5.137	0.189

表 C.1 – continued

			• •					
ID	Flux	$\sigma_{ m Flux}$	х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	$[J_{\underline{y}}]$	y]	[ma	us]	[ma	s]	[km	ı/s]
41	2.920	0.162	21.906	0.049	-8.341	0.124	3.227	0.197
42	27.831	0.204	22.241	0.035	-8.537	0.032	4.099	0.191
43	50.148	0.142	12.372	0.011	13.516	0.024	3.780	0.247
44	1.216	0.128	4.808	0.011	14.959	0.048	5.005	0.244
45	1.635	0.128	21.250	0.032	8.102	0.025	4.873	0.217
46	2.076	0.128	20.318	0.037	-8.075	0.075	4.918	0.213
47	3.252	0.206	-0.688	0.037	-0.799	0.059	4.323	0.264
48	15.188	0.143	11.936	0.029	13.825	0.057	3.086	0.218
49	2.264	0.227	13.754	0.078	22.477	0.095	4.367	0.205
50	0.967	0.120	15.771	0.024	4.621	0.041	4.435	0.217
51	1.742	0.135	12.464	0.056	12.946	0.042	3.368	0.281
52	14.299	0.328	12.537	0.015	13.994	0.044	2.525	0.264
53	1.992	0.138	17.927	0.010	-10.128	0.021	3.792	0.244
54	1.613	0.137	26.053	0.021	-4.368	0.076	3.554	0.216
55	11.258	0.173	0.644	0.039	-3.146	0.030	2.709	0.256
56	3.143	0.173	0.391	0.177	-3.440	0.033	3.667	0.194
57	4.988	0.173	0.501	0.015	-3.176	0.015	1.362	0.227
58	9.648	0.173	-0.365	0.018	-0.219	0.072	1.012	0.211
59	2.350	0.124	18.352	0.013	-10.316	0.025	2.732	0.242
60	8.304	0.117	17.133	0.009	-8.417	0.013	2.447	0.218
61	21.552	0.129	10.849	0.042	15.194	0.018	1.972	0.241
62	5.233	0.137	6.264	0.023	-7.603	0.016	2.440	0.227
63	1.790	0.137	23.980	0.006	14.888	0.059	2.732	0.215
64	2.126	0.110	6.167	0.013	13.972	0.032	2.506	0.228
65	1.084	0.110	5.710	0.040	-8.599	0.175	2.706	0.217
66	2.604	0.110	5.729	0.014	-8.766	0.107	1.543	0.161
67	2.060	0.110	6.389	0.017	14.636	0.036	2.720	0.216
68	1.270	0.110	-3.347	0.025	4.813	0.073	2.115	0.244
69	0.955	0.132	25.939	0.016	-5.277	0.059	2.251	0.217

表 C.1 – continued

			R C	.1 00	minucu			
ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	/s]
70	7.132	0.107	5.682	0.007	-9.142	0.040	1.092	0.263
71	1.424	0.136	6.076	0.020	15.145	0.035	1.631	0.242
72	13.087	0.197	6.421	0.022	-8.878	0.026	0.163	0.266
73	9.782	0.172	7.663	0.045	-9.065	0.022	-0.084	0.284
74	55.032	0.177	-0.031	0.012	0.012	0.010	-0.102	0.280
75	5.715	0.177	0.047	0.010	0.781	0.053	0.608	0.307
76	4.148	0.177	0.018	0.013	-0.756	0.039	0.573	0.265
77	19.092	0.164	23.075	0.026	13.980	0.019	-0.353	0.245
78	4.949	0.132	7.530	0.005	-9.265	0.012	0.856	0.189
79	3.883	0.152	21.222	0.008	13.947	0.036	0.423	0.244
80	3.081	0.194	24.504	0.056	12.599	0.042	0.263	0.277
81	10.415	0.124	21.418	0.029	-10.977	0.035	-0.129	0.270
82	5.290	0.197	25.717	0.040	10.030	0.070	-0.358	0.316
83	6.235	0.101	25.490	0.009	12.220	0.007	0.150	0.215
84	2.887	0.179	7.019	0.020	-8.868	0.048	-0.308	0.246
85	0.770	0.064	23.060	0.008	14.628	0.023	-0.520	0.231
86	1.278	0.137	23.954	0.011	13.997	0.037	-0.787	0.217
87	1.049	0.141	25.394	0.011	9.722	0.052	-0.789	0.217
88	9.703	0.336	26.532	0.023	9.821	0.027	-2.116	0.260
89	11.582	0.113	25.858	0.019	9.740	0.012	-2.009	0.259
90	1.931	0.104	22.819	0.009	11.111	0.026	-2.411	0.267
91	1.897	0.104	31.028	0.025	-8.959	0.045	-2.822	0.285
92	4.196	0.121	22.329	0.012	11.941	0.022	-3.188	0.275
93	4.116	0.111	14.160	0.023	11.187	0.014	-4.770	0.230
94	1.161	0.111	9.121	0.016	16.027	0.019	-4.686	0.217
			(4) Epc	och: 200	7/05/18			
1	20.295	0.154	7.843	0.025	-11.832	0.020	12.987	0.235
2	0.948	0.121	10.125	0.016	-12.488	0.045	14.150	0.218
3	2.156	0.135	17.114	0.042	-11.436	0.117	12.654	0.213

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	/s]
4	2.336	0.135	17.203	0.070	-11.330	0.057	11.456	0.207
5	14.071	0.135	7.955	0.003	-11.769	0.008	11.902	0.202
6	4.002	0.106	17.008	0.012	-11.126	0.030	11.159	0.304
7	1.333	0.126	16.972	0.013	-10.828	0.061	8.768	0.217
8	0.575	0.044	16.947	0.004	-11.207	0.002	7.022	0.216
9	1.585	0.116	1.406	0.017	-14.890	0.031	11.685	0.212
10	8.739	0.116	18.287	0.016	-4.979	0.014	9.203	0.228
11	1.358	0.119	8.139	0.013	-10.943	0.027	9.202	0.216
12	7.835	0.102	27.934	0.009	2.503	0.013	8.084	0.196
13	2.248	0.162	27.728	0.024	5.475	0.034	8.195	0.224
14	1.926	0.162	26.525	0.038	7.681	0.028	8.349	0.217
15	3.025	0.119	28.048	0.006	-1.764	0.022	8.019	0.223
16	10.916	0.107	17.000	0.006	-10.632	0.012	7.072	0.237
17	1.943	0.114	11.343	0.023	12.318	0.034	7.749	0.234
18	3.406	0.111	18.760	0.008	-13.267	0.022	7.225	0.250
19	0.483	0.046	17.070	0.005	-10.018	0.028	7.032	0.217
20	6.854	0.127	25.047	0.016	-3.531	0.058	6.421	0.237
21	1.479	0.117	26.981	0.012	6.508	0.037	6.627	0.250
22	5.762	0.125	23.621	0.032	-8.420	0.033	6.450	0.216
23	2.394	0.137	19.642	0.012	6.311	0.044	6.199	0.247
24	3.973	0.127	17.115	0.014	14.267	0.022	6.103	0.238
25	2.605	0.178	26.122	0.068	5.056	0.040	6.535	0.204
26	4.805	0.178	28.184	0.065	-1.323	0.038	5.940	0.268
27	15.937	0.131	11.843	0.006	13.212	0.052	5.034	0.238
28	2.995	0.123	17.113	0.005	13.448	0.012	5.596	0.162
29	19.104	0.192	17.275	0.034	13.512	0.026	3.854	0.206
30	14.929	0.181	20.944	0.020	-8.087	0.020	4.709	0.241
31	15.388	0.248	22.043	0.049	-8.360	0.029	4.385	0.269
32	1.692	0.248	18.689	0.013	6.535	0.025	5.357	0.211

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[Jy	y]	[ma	as]	[ma	us]	[km	ı/s]
33	50.993	0.132	12.376	0.006	13.555	0.028	3.774	0.215
34	1.413	0.132	21.212	0.030	8.116	0.022	4.882	0.217
35	15.159	0.121	22.328	0.010	-8.610	0.021	4.078	0.243
36	1.076	0.106	4.791	0.016	15.048	0.038	4.814	0.209
37	10.718	0.106	17.677	0.054	13.760	0.031	4.127	0.289
38	2.632	0.106	28.463	0.070	-0.992	0.039	4.145	0.293
39	17.036	0.106	11.880	0.012	13.694	0.060	3.514	0.271
40	6.738	0.212	0.753	0.067	-3.146	0.043	3.499	0.194
41	1.810	0.148	17.886	0.023	-10.032	0.045	3.818	0.231
42	2.576	0.148	12.266	0.006	12.898	0.036	3.597	0.215
43	1.197	0.131	26.025	0.009	-4.363	0.029	3.568	0.217
44	0.752	0.131	49.790	0.014	34.644	0.059	3.574	0.217
45	4.133	0.131	12.502	0.026	14.386	0.057	3.239	0.191
46	12.497	0.131	12.543	0.006	14.029	0.050	1.828	0.206
47	2.653	0.140	18.330	0.017	-10.337	0.027	2.751	0.248
48	0.893	0.125	5.652	0.012	-8.394	0.046	3.125	0.217
49	0.900	0.088	5.800	0.024	-8.405	0.064	1.370	0.216
50	9.036	0.110	17.122	0.006	-8.371	0.017	2.442	0.218
51	0.988	0.157	0.152	0.090	-3.659	0.135	3.124	0.217
52	0.898	0.128	24.847	0.017	9.606	0.047	3.105	0.216
53	1.807	0.113	23.953	0.011	14.953	0.050	2.860	0.219
54	9.989	0.117	0.537	0.019	-3.122	0.010	2.175	0.266
55	23.359	0.161	10.810	0.042	15.221	0.015	1.905	0.256
56	6.223	0.122	6.242	0.018	-7.583	0.020	2.435	0.229
57	0.945	0.122	25.922	0.055	-5.200	0.056	2.297	0.215
58	7.591	0.113	5.662	0.008	-9.066	0.032	1.209	0.257
59	0.491	0.113	10.967	0.019	15.924	0.086	1.848	0.216
60	1.674	0.148	6.060	0.014	15.173	0.030	1.815	0.216
61	14.305	0.314	6.402	0.022	-8.866	0.017	0.171	0.271

表 C.1 – continued

II)	Flux	$\sigma_{ m Flux}$	х	$\sigma_{\rm x}$	У	σ_{y}	v	σ_v	
		[Jy	y]	[ma	us]	[ma	s]	[km	/s]	
6	2	3.528	0.125	7.884	0.008	-8.970	0.027	1.018	0.221	
6	3	8.861	0.125	7.567	0.031	-9.023	0.019	-0.624	0.261	
6	4	11.064	0.127	21.418	0.025	-10.959	0.025	-0.166	0.256	
6	5	57.475	0.183	-0.055	0.012	0.024	0.011	-0.042	0.294	
6	6	5.156	0.180	7.478	0.024	-9.235	0.030	0.854	0.188	
6	7	19.649	0.148	23.059	0.029	14.024	0.015	-0.265	0.240	
6	8	2.216	0.154	22.897	0.008	14.086	0.020	-2.962	0.217	
6	9	3.857	0.189	24.426	0.019	12.616	0.041	0.483	0.263	
7	0	3.943	0.221	21.202	0.017	13.932	0.071	0.589	0.221	
7	1	6.142	0.177	25.696	0.030	9.997	0.051	-0.341	0.330	
7	2	7.375	0.115	25.477	0.010	12.240	0.007	0.172	0.218	
7	3	2.892	0.115	0.073	0.009	0.714	0.015	-0.107	0.261	
7	4	3.047	0.115	-0.090	0.011	-0.655	0.039	-0.131	0.262	
7	5	0.574	0.115	23.086	0.004	14.682	0.021	-0.767	0.217	
7	6	7.185	0.132	26.572	0.027	9.858	0.018	-2.042	0.272	
7	7	12.473	0.109	25.838	0.017	9.774	0.013	-1.995	0.253	
7	8	1.650	0.099	22.804	0.007	11.134	0.016	-2.497	0.264	
7	9	12.331	0.173	22.237	0.041	12.032	0.042	-2.794	0.269	
8	0	1.794	0.102	30.985	0.025	-8.973	0.037	-2.637	0.281	
8	1	1.323	0.102	22.637	0.017	14.352	0.030	-2.929	0.216	
8	2	3.958	0.111	14.134	0.028	11.230	0.027	-4.789	0.222	
8	3	1.658	0.111	9.071	0.017	16.076	0.036	-4.645	0.213	
				(5) Epo	och: 200	7/05/19				
	1	20.899	0.128	7.770	0.019	-11.869	0.019	13.216	0.193	
	2	0.894	0.128	10.085	0.015	-12.519	0.020	14.025	0.216	
	3	5.650	0.112	17.013	0.019	-11.237	0.050	11.599	0.266	
	4	20.750	0.112	7.912	0.010	-11.787	0.028	12.108	0.225	
	5	2.291	0.112	16.910	0.020	-10.991	0.070	9.590	0.307	
	6	1.504	0.105	1.372	0.016	-14.913	0.038	11.660	0.226	

表 C.1 – continued

ID	Flux	σ_{Flux}	x	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J ₂	V]	[ma	us]	[ma	s]	[km	u/s]
7	1.366	0.133	8.063	0.016	-11.097	0.058	9.837	0.317
8	9.136	0.111	18.247	0.008	-5.009	0.013	9.251	0.229
9	1.414	0.121	13.930	0.015	-7.720	0.024	9.474	0.224
10	7.510	0.102	27.900	0.006	2.461	0.004	8.031	0.207
11	2.093	0.120	27.677	0.011	5.406	0.022	8.182	0.232
12	2.015	0.120	26.503	0.015	7.680	0.041	8.361	0.217
13	2.953	0.175	28.004	0.026	-1.711	0.053	7.575	0.269
14	11.067	0.106	16.959	0.005	-10.665	0.011	7.018	0.225
15	2.484	0.133	11.263	0.014	12.293	0.043	7.741	0.231
16	3.531	0.111	18.700	0.012	-13.271	0.025	7.085	0.274
17	5.279	0.122	25.045	0.019	-3.456	0.049	6.479	0.247
18	1.543	0.112	26.957	0.012	6.459	0.021	6.788	0.242
19	3.000	0.210	28.241	0.025	-1.327	0.047	6.252	0.250
20	5.308	0.115	23.587	0.039	-8.459	0.009	6.384	0.223
21	4.529	0.128	17.065	0.015	14.271	0.045	6.006	0.231
22	2.378	0.147	19.610	0.016	6.312	0.036	6.107	0.244
23	1.551	0.147	8.525	0.029	-10.298	0.054	6.639	0.216
24	1.866	0.150	26.074	0.078	4.988	0.047	6.330	0.234
25	2.741	0.150	24.915	0.004	-3.819	0.013	6.188	0.217
26	1.144	0.160	22.769	0.048	5.433	0.035	6.163	0.217
27	17.337	0.191	11.815	0.013	13.189	0.058	5.055	0.249
28	9.809	0.314	17.554	0.057	13.650	0.028	5.350	0.235
29	21.197	0.314	17.416	0.011	13.571	0.021	3.776	0.239
30	15.220	0.244	20.897	0.027	-8.116	0.025	4.785	0.248
31	1.637	0.112	18.645	0.013	6.521	0.018	5.668	0.205
32	4.865	0.112	17.034	0.015	13.328	0.036	5.290	0.195
33	2.964	0.112	16.865	0.016	13.482	0.031	4.080	0.204
34	25.758	0.324	22.100	0.041	-8.460	0.032	4.255	0.234
35	54.337	0.194	12.348	0.010	13.552	0.035	3.696	0.254

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	У	$\sigma_{\rm v}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	us]	[km	[/s]
36	1.412	0.194	4.792	0.011	15.073	0.023	4.880	0.217
37	1.556	0.194	21.445	0.015	-8.546	0.086	4.939	0.207
38	1.316	0.165	22.018	0.017	-9.197	0.020	4.383	0.210
39	4.985	0.250	-0.695	0.072	-0.678	0.047	3.818	0.275
40	1.904	0.255	28.285	0.019	-0.906	0.063	4.175	0.241
41	16.391	0.255	11.841	0.008	13.670	0.066	3.558	0.283
42	6.615	0.407	12.436	0.018	14.297	0.052	3.713	0.194
43	12.172	0.185	12.505	0.011	13.971	0.027	1.982	0.227
44	2.066	0.221	17.877	0.013	-10.127	0.032	3.820	0.235
45	11.754	0.244	0.574	0.033	-3.149	0.030	2.490	0.287
46	3.150	0.244	26.081	0.036	-4.495	0.056	3.605	0.214
47	3.058	0.176	18.305	0.010	-10.386	0.043	2.704	0.264
48	2.401	0.268	0.088	0.038	-3.708	0.035	3.123	0.217
49	9.279	0.157	17.082	0.008	-8.442	0.026	2.470	0.224
50	22.380	0.163	10.828	0.046	15.231	0.009	2.105	0.243
51	12.902	0.163	-0.398	0.011	-0.340	0.039	1.548	0.262
52	7.039	0.177	6.195	0.016	-7.554	0.018	2.453	0.227
53	2.132	0.177	23.924	0.010	14.836	0.032	2.729	0.215
54	2.926	0.206	6.136	0.020	13.957	0.039	2.514	0.225
55	1.509	0.206	6.454	0.061	14.509	0.160	2.736	0.214
56	5.713	0.151	0.077	0.012	1.033	0.025	1.716	0.245
57	1.764	0.105	10.514	0.019	15.017	0.032	2.036	0.264
58	2.372	0.105	10.472	0.010	15.206	0.032	0.589	0.208
59	8.310	0.160	5.626	0.009	-9.102	0.042	1.144	0.270
60	2.615	0.246	6.110	0.028	15.142	0.039	1.574	0.227
61	53.862	0.149	-0.042	0.023	-0.005	0.022	0.154	0.308
62	14.774	0.347	6.349	0.030	-8.896	0.022	0.161	0.258
63	3.578	0.152	-0.048	0.016	-0.750	0.021	0.461	0.264
64	11.457	0.230	7.579	0.051	-9.073	0.026	-0.113	0.273

表 C.1 – continued

II	O Flux	σ_{Flux}	х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v		
		[Jy]	[m	.as]	[ma	as]	[km	l/s]		
6	5 1.910	0.230	-0.198	0.095	0.676	0.025	0.874	0.224		
6	6 5.611	0.201	24.453	0.030	12.622	0.035	0.226	0.288		
6	7 20.55	4 0.169	23.027	0.027	14.002	0.016	-0.339	0.246		
6	8 5.57	0.195	7.459	0.018	-9.288	0.044	0.858	0.190		
6	9 11.71	2 0.140	21.363	0.033	-10.964	0.039	-0.173	0.269		
7	0 4.283	3 0.242	21.208	0.019	13.996	0.055	0.384	0.228		
7	1 8.880	0.124	25.444	0.010	12.219	0.006	0.189	0.226		
7	2 2.923	3 0.124	-0.401	0.009	-0.004	0.053	-0.209	0.293		
7	3 5.836	6 0.124	-0.238	0.018	-0.001	0.038	-2.256	0.229		
7	4 2.984	4 0.124	6.992	0.016	-8.969	0.077	-0.347	0.237		
7	5 13.72	3 0.129	25.783	0.015	9.809	0.040	-1.556	0.249		
7	6 1.094	4 0.133	25.291	0.012	9.863	0.043	-1.032	0.248		
7	7 2.688	8 0.143	22.446	0.081	11.881	0.041	-1.635	0.292		
73	8 4.392	2 0.143	22.293	0.006	11.915	0.013	-3.486	0.234		
7	9 8.806	6 0.181	26.517	0.017	9.830	0.019	-2.128	0.264		
8	0 1.403	3 0.181	22.731	0.058	13.355	0.023	-1.182	0.215		
8	1 1.656	6 0.099	22.770	0.012	11.108	0.025	-2.482	0.270		
8	2 1.621	0.099	30.947	0.007	-9.035	0.017	-2.421	0.197		
8	3 3.435	5 0.135	22.239	0.063	11.972	0.041	-2.672	0.149		
8	4 2.659	0.148	22.794	0.020	14.225	0.045	-2.958	0.217		
8	5 4.588	8 0.109	14.095	0.028	11.213	0.017	-4.786	0.211		
8	6 2.168	8 0.109	9.056	0.005	16.026	0.013	-4.603	0.201		
			(6) Ep	och: 200	7/05/20					
	1 22.91	4 0.124	7.769	0.015	-11.869	0.015	13.205	0.190		
	2 1.129	9 0.110	10.087	0.012	-12.518	0.030	14.120	0.223		
	3 6.387	7 0.171	17.027	0.015	-11.263	0.035	11.597	0.276		
4	4 24.68	2 0.171	7.906	0.011	-11.809	0.019	12.125	0.218		
ļ	5 0.457	7 0.050	7.794	0.130	-11.203	0.050	12.240	0.217		
(6 1.926	6 0.098	1.380	0.011	-14.959	0.017	11.632	0.236		

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	У	$\sigma_{\rm v}$	v	σ_v
	[J <u>.</u>	y]	[ma		[ma	s]	[km	u/s]
7	1.655	0.121	8.091	0.009	-11.019	0.028	9.405	0.251
8	11.169	0.099	16.937	0.016	-10.768	0.056	7.902	0.428
9	9.939	0.109	18.237	0.013	-5.010	0.013	9.179	0.234
10	1.333	0.109	13.928	0.019	-7.663	0.044	9.450	0.248
11	1.200	0.145	25.461	0.019	8.684	0.050	9.165	0.211
12	7.104	0.097	27.902	0.008	2.455	0.010	8.050	0.195
13	2.354	0.115	26.518	0.023	7.660	0.035	8.327	0.233
14	4.017	0.168	28.054	0.031	-1.564	0.062	6.769	0.348
15	3.027	0.168	27.698	0.027	5.415	0.026	8.217	0.235
16	2.689	0.110	11.321	0.026	12.345	0.075	7.541	0.263
17	4.247	0.107	18.713	0.010	-13.283	0.034	7.074	0.258
18	7.690	0.143	24.989	0.017	-3.589	0.064	6.398	0.241
19	1.927	0.118	26.983	0.014	6.431	0.031	6.673	0.245
20	1.141	0.168	19.977	0.070	9.760	0.070	7.043	0.217
21	1.141	0.133	21.459	0.013	7.294	0.036	7.027	0.216
22	5.922	0.111	23.539	0.038	-8.457	0.023	6.285	0.204
23	2.671	0.115	19.601	0.014	6.271	0.036	6.177	0.251
24	5.418	0.133	17.091	0.012	14.230	0.017	6.241	0.225
25	1.920	0.182	17.334	0.013	14.384	0.122	4.405	0.214
26	1.378	0.149	8.483	0.020	-10.249	0.033	6.597	0.217
27	16.657	0.151	11.805	0.014	13.260	0.073	4.891	0.277
28	1.791	0.167	22.750	0.033	5.478	0.031	6.121	0.210
29	16.215	0.190	20.899	0.022	-8.139	0.029	4.736	0.252
30	1.746	0.102	18.635	0.010	6.569	0.020	5.522	0.218
31	15.528	0.187	21.976	0.020	-8.399	0.038	4.617	0.194
32	54.320	0.132	12.334	0.013	13.538	0.030	3.729	0.256
33	1.449	0.119	4.757	0.011	15.023	0.063	5.000	0.230
34	1.472	0.199	15.105	0.110	-9.150	0.102	5.254	0.211
35	1.743	0.199	21.223	0.054	7.957	0.058	4.764	0.241

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	у	$\sigma_{\rm v}$	v	σ_v
	[J ₂	y]	[ma	ıs]	[ma	us]	[km	l/s]
36	3.987	0.286	20.308	0.047	-8.203	0.023	4.765	0.189
37	1.244	0.127	21.409	0.043	-8.525	0.038	4.856	0.217
38	1.296	0.127	25.633	0.040	5.289	0.117	4.742	0.238
39	0.894	0.070	11.835	0.053	13.943	0.024	4.857	0.217
40	13.355	0.119	11.845	0.015	13.759	0.019	3.172	0.263
41	22.430	0.153	22.309	0.012	-8.617	0.019	3.924	0.229
42	23.008	0.242	17.268	0.047	13.501	0.029	3.955	0.238
43	4.835	0.122	17.717	0.012	13.757	0.008	3.459	0.222
44	4.097	0.088	12.435	0.009	14.269	0.043	3.719	0.217
45	6.983	0.088	12.521	0.024	14.039	0.023	1.487	0.198
46	1.162	0.110	22.107	0.037	-9.266	0.017	4.411	0.215
47	1.366	0.131	19.399	0.042	11.518	0.046	4.415	0.216
48	6.138	0.176	-0.656	0.074	-0.691	0.054	3.699	0.235
49	2.025	0.123	17.878	0.016	-10.038	0.034	3.662	0.248
50	11.802	0.174	0.576	0.044	-3.127	0.013	2.528	0.286
51	1.356	0.137	25.978	0.014	-4.433	0.022	3.334	0.249
52	2.974	0.117	18.303	0.017	-10.363	0.024	2.703	0.253
53	8.256	0.135	6.173	0.033	-7.654	0.067	2.684	0.193
54	1.300	0.131	5.563	0.012	-8.337	0.024	3.101	0.215
55	0.615	0.089	5.712	0.030	-8.358	0.067	1.629	0.234
56	9.184	0.113	17.069	0.008	-8.406	0.013	2.471	0.222
57	0.969	0.107	24.833	0.015	9.622	0.029	3.121	0.217
58	1.255	0.107	25.149	0.012	9.773	0.064	-0.321	0.216
59	2.473	0.108	23.928	0.009	14.901	0.037	2.819	0.214
60	24.478	0.167	10.809	0.030	15.212	0.016	2.091	0.225
61	1.761	0.167	12.486	0.003	14.455	0.057	2.826	0.177
62	0.876	0.140	27.741	0.021	7.761	0.042	2.695	0.217
63	8.633	0.105	5.625	0.009	-9.105	0.044	1.176	0.268
64	2.330	0.171	6.075	0.022	15.060	0.027	1.626	0.239

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	у	$\sigma_{\rm y}$	v	σ_v
	[Jy	y]	[ma	ls]	[ma	ls]	[km	[s]
65	2.555	0.171	10.466	0.011	15.162	0.020	0.279	0.290
66	9.958	0.187	7.692	0.042	-9.032	0.024	0.116	0.258
67	4.030	0.181	24.448	0.050	12.637	0.032	0.372	0.287
68	9.968	0.114	25.458	0.016	12.210	0.010	0.286	0.212
69	20.801	0.113	23.032	0.025	14.011	0.024	-0.334	0.244
70	55.547	0.180	-0.089	0.013	0.002	0.011	-0.096	0.299
71	12.588	0.163	6.310	0.019	-8.919	0.020	0.053	0.281
72	5.952	0.161	-0.024	0.033	-0.778	0.027	0.413	0.279
73	5.101	0.118	7.479	0.007	-9.231	0.025	0.688	0.213
74	3.698	0.106	7.461	0.008	-9.057	0.034	-1.003	0.237
75	7.781	0.185	25.602	0.037	9.996	0.054	-0.541	0.314
76	11.946	0.114	21.364	0.040	-10.991	0.039	-0.132	0.285
77	4.692	0.256	21.150	0.020	13.967	0.034	0.407	0.248
78	0.885	0.256	32.341	0.012	-3.819	0.045	0.529	0.217
79	2.112	0.256	-0.110	0.031	0.720	0.017	0.205	0.187
80	2.722	0.149	6.992	0.009	-8.966	0.040	-0.377	0.267
81	4.178	0.136	22.346	0.034	11.909	0.023	-2.722	0.351
82	1.294	0.136	23.896	0.015	13.942	0.049	-0.958	0.245
83	0.598	0.136	-41.554	0.015	-12.793	0.040	-0.768	0.217
84	8.473	0.173	26.557	0.010	9.845	0.013	-2.113	0.277
85	1.365	0.173	22.770	0.025	13.194	0.161	-1.198	0.217
86	1.406	0.173	6.851	0.016	13.601	0.065	-1.192	0.216
87	14.622	0.100	25.807	0.017	9.753	0.008	-1.970	0.250
88	1.593	0.100	9.643	0.018	15.514	0.031	-1.864	0.225
89	2.197	0.098	22.771	0.007	11.100	0.017	-2.523	0.268
90	1.549	0.106	30.982	0.023	-8.976	0.045	-2.859	0.313
91	3.695	0.106	22.826	0.063	14.175	0.022	-3.344	0.214
92	4.820	0.108	14.092	0.024	11.225	0.023	-4.735	0.230

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v	
	[J]	y]	[ma	as]	[ma	us]	[km	[s]	
93	2.629	0.095	9.046	0.018	16.021	0.034	-4.566	0.196	
			(7) Epc	och: 200	7/05/21				
1	0.953	0.000	10.082	0.021	-12.503	0.055	13.857	0.240	
2	23.606	0.142	7.771	0.017	-11.875	0.025	13.220	0.189	
3	2.264	0.136	17.069	0.019	-11.449	0.121	12.618	0.204	
4	4.238	0.186	17.137	0.067	-11.382	0.107	11.235	0.153	
5	25.162	0.186	7.910	0.010	-11.799	0.024	12.105	0.227	
6	1.645	0.157	8.028	0.023	-11.106	0.042	10.375	0.371	
7	2.111	0.107	1.397	0.009	-14.988	0.023	11.791	0.226	
8	5.656	0.115	16.981	0.015	-11.170	0.034	11.054	0.325	
9	9.927	0.111	18.236	0.010	-5.013	0.014	9.191	0.228	
10	1.245	0.111	13.925	0.012	-7.655	0.038	9.465	0.246	
11	11.369	0.110	16.963	0.003	-10.677	0.012	7.056	0.233	
12	2.479	0.108	27.683	0.009	5.416	0.019	8.306	0.239	
13	2.240	0.120	26.516	0.022	7.658	0.031	8.341	0.226	
14	6.315	0.096	27.911	0.011	2.461	0.014	8.022	0.188	
15	3.049	0.166	28.001	0.021	-1.726	0.046	7.538	0.281	
16	1.329	0.166	27.848	0.013	-1.527	0.030	4.446	0.217	
17	1.128	0.166	10.642	0.020	12.396	0.042	8.356	0.217	
18	2.895	0.132	11.274	0.014	12.351	0.050	7.562	0.255	
19	4.228	0.101	18.713	0.007	-13.316	0.028	7.047	0.257	
20	0.838	0.068	16.957	0.008	-10.098	0.020	7.129	0.232	
21	5.580	0.126	25.049	0.018	-3.413	0.023	6.836	0.220	
22	1.982	0.117	26.965	0.009	6.490	0.024	6.727	0.247	
23	1.191	0.155	8.751	0.022	-11.267	0.042	7.024	0.216	
24	1.012	0.134	21.416	0.017	7.361	0.030	7.035	0.217	
25	3.589	0.197	28.231	0.034	-1.354	0.038	6.223	0.238	
26	5.559	0.114	23.555	0.057	-8.510	0.035	6.303	0.222	
27	4.163	0.124	17.080	0.008	14.240	0.011	6.075	0.248	

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	n/s]
28	1.911	0.120	19.598	0.026	6.266	0.039	6.137	0.256
29	2.944	0.257	25.986	0.052	5.100	0.060	6.539	0.205
30	5.288	0.136	24.944	0.014	-3.746	0.018	6.022	0.216
31	1.629	0.136	8.551	0.027	-10.011	0.055	6.211	0.214
32	12.095	0.160	11.826	0.016	13.138	0.061	5.159	0.224
33	3.404	0.281	18.064	0.043	13.581	0.053	5.790	0.252
34	5.071	0.281	17.704	0.008	13.743	0.027	3.587	0.216
35	2.696	0.281	17.540	0.017	13.589	0.027	5.753	0.217
36	21.635	0.375	17.378	0.041	13.553	0.036	4.047	0.257
37	14.931	0.187	20.878	0.037	-8.134	0.028	4.837	0.215
38	1.896	0.112	18.649	0.011	6.547	0.044	5.664	0.203
39	2.220	0.115	17.062	0.009	13.374	0.055	5.587	0.153
40	5.857	0.115	16.978	0.053	13.488	0.092	4.054	0.301
41	13.239	0.325	21.988	0.047	-8.407	0.032	4.411	0.252
42	55.394	0.231	12.331	0.009	13.537	0.024	3.785	0.225
43	0.838	0.105	21.535	0.041	-8.892	0.078	5.300	0.217
44	1.303	0.105	21.170	0.021	7.969	0.057	4.902	0.215
45	1.168	0.154	4.762	0.010	15.072	0.043	4.867	0.217
46	1.646	0.154	20.242	0.042	-8.172	0.053	4.987	0.185
47	0.815	0.081	11.883	0.109	12.607	0.079	4.840	0.215
48	0.640	0.081	11.933	0.082	13.895	0.017	4.891	0.217
49	12.207	0.193	11.837	0.018	13.768	0.021	3.236	0.258
50	22.044	0.262	22.302	0.008	-8.624	0.013	4.019	0.215
51	4.661	0.140	12.412	0.017	14.236	0.037	3.701	0.211
52	17.651	0.140	12.494	0.012	13.940	0.045	2.203	0.205
53	1.049	0.093	12.317	0.026	12.861	0.020	4.349	0.198
54	1.514	0.196	22.122	0.076	-9.212	0.020	4.394	0.212
55	1.762	0.238	-50.927	0.034	19.424	0.060	4.414	0.216
56	2.229	0.243	17.868	0.011	-10.106	0.027	3.970	0.215

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	[/s]
57	9.650	0.184	0.715	0.073	-3.083	0.021	3.141	0.197
58	4.780	0.251	-0.598	0.027	-0.690	0.064	3.535	0.214
59	8.603	0.189	6.195	0.029	-7.626	0.031	2.457	0.230
60	8.000	0.157	17.089	0.006	-8.428	0.012	2.413	0.226
61	21.364	0.183	10.834	0.014	15.213	0.012	2.170	0.222
62	3.237	0.173	18.333	0.030	-10.396	0.048	2.397	0.249
63	2.395	0.173	23.937	0.007	14.943	0.027	2.750	0.211
64	3.414	0.217	6.115	0.012	14.024	0.024	2.483	0.218
65	1.717	0.222	-3.407	0.021	5.157	0.039	2.677	0.216
66	9.873	0.151	0.477	0.011	-3.140	0.027	1.900	0.264
67	4.734	0.148	10.504	0.013	15.122	0.016	1.424	0.296
68	7.992	0.128	5.627	0.009	-9.102	0.038	1.181	0.260
69	11.840	0.469	6.324	0.019	-8.924	0.027	0.086	0.275
70	11.477	0.431	7.626	0.039	-9.052	0.019	-0.110	0.273
71	52.449	0.364	-0.080	0.012	0.001	0.014	-0.118	0.292
72	15.405	0.801	-0.490	0.043	-0.208	0.065	0.877	0.199
73	5.125	0.269	-0.039	0.012	-0.725	0.020	0.358	0.272
74	4.795	0.269	-0.008	0.020	0.787	0.089	0.734	0.291
75	21.483	0.247	23.031	0.026	14.007	0.020	-0.344	0.248
76	2.404	0.247	22.922	0.032	14.104	0.110	-3.348	0.215
77	4.624	0.428	24.392	0.044	12.653	0.038	0.412	0.263
78	5.057	0.224	7.465	0.013	-9.260	0.030	0.868	0.195
79	2.810	0.356	21.166	0.024	13.905	0.074	0.619	0.227
80	1.958	0.246	25.525	0.019	10.241	0.051	0.904	0.209
81	1.427	0.246	25.276	0.029	10.068	0.070	-1.590	0.210
82	9.760	0.242	25.455	0.008	12.228	0.010	0.261	0.203
83	2.242	0.203	21.007	0.022	-10.986	0.038	0.665	0.222
84	10.789	0.181	21.413	0.016	-11.047	0.026	-0.315	0.259
85	0.725	0.181	23.047	0.030	14.680	0.033	-0.322	0.216

表 C.1 – continued

				• • • • •	iiiiiiaca			
ID	Flux	$\sigma_{ m Flux}$	х	$\sigma_{\rm x}$	У	σ_{y}	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	/s]
86	1.729	0.176	6.936	0.041	-8.979	0.039	-0.610	0.267
87	1.745	0.165	25.217	0.031	9.981	0.038	-0.801	0.216
88	8.553	0.235	26.551	0.017	9.860	0.024	-2.054	0.272
89	14.205	0.106	25.806	0.013	9.755	0.009	-1.859	0.253
90	1.031	0.100	25.914	0.063	9.177	0.020	-1.698	0.211
91	1.348	0.101	9.628	0.014	15.505	0.042	-1.798	0.211
92	2.335	0.099	22.770	0.010	11.109	0.017	-2.628	0.268
93	3.807	0.115	22.256	0.017	11.933	0.020	-3.052	0.303
94	1.294	0.106	30.996	0.022	-8.978	0.049	-2.881	0.325
95	0.886	0.106	0.360	0.037	-0.483	0.144	-2.502	0.217
96	1.338	0.106	22.651	0.026	14.333	0.062	-3.303	0.202
97	4.289	0.105	14.084	0.031	11.234	0.011	-4.761	0.217
98	2.535	0.094	9.040	0.027	16.038	0.034	-4.573	0.187
			(8) Epc	och: 200	7/05/22			
1	25.572	0.171	7.852	0.030	-11.822	0.014	12.595	0.264
2	0.972	0.171	10.071	0.009	-12.560	0.039	14.042	0.213
3	1.261	0.074	7.951	0.014	-11.212	0.019	12.023	0.216
4	1.434	0.074	8.008	0.019	-11.279	0.103	10.551	0.215
5	1.297	0.218	8.044	0.012	-11.004	0.037	9.188	0.215
6	5.771	0.218	17.026	0.017	-11.231	0.040	11.420	0.275
7	1.513	0.100	1.359	0.011	-14.925	0.021	11.644	0.217
8	10.843	0.101	16.960	0.008	-10.680	0.022	7.178	0.260
9	9.556	0.136	18.231	0.010	-4.994	0.012	9.246	0.234
10	2.244	0.126	27.676	0.010	5.422	0.017	8.192	0.229
11	2.038	0.126	26.539	0.012	7.710	0.036	8.372	0.216
12	5.032	0.123	27.912	0.009	2.462	0.009	7.981	0.193
13	2.691	0.123	28.039	0.014	-1.801	0.031	7.760	0.238
14	1.871	0.165	11.265	0.014	12.309	0.026	7.725	0.245
15	3.670	0.127	18.705	0.005	-13.324	0.016	7.272	0.240

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J <u>y</u>	y]	[ma	us]	[ma	s]	[km	l/s]
16	4.940	0.114	25.005	0.027	-3.527	0.072	6.378	0.248
17	2.007	0.104	26.960	0.012	6.448	0.022	6.848	0.228
18	5.423	0.137	23.584	0.047	-8.476	0.022	6.371	0.226
19	4.130	0.142	17.140	0.053	14.275	0.034	5.627	0.319
20	2.148	0.153	19.606	0.022	6.292	0.033	6.180	0.245
21	2.590	0.153	28.178	0.085	-1.348	0.035	5.815	0.272
22	1.425	0.208	28.322	0.017	-1.129	0.059	3.566	0.217
23	2.142	0.208	25.987	0.057	5.207	0.124	6.240	0.207
24	14.793	0.194	11.843	0.053	13.177	0.055	4.966	0.219
25	17.611	0.265	17.444	0.047	13.558	0.027	4.052	0.222
26	13.182	0.165	20.916	0.033	-8.147	0.037	4.758	0.256
27	9.437	0.203	16.992	0.025	13.390	0.045	4.619	0.264
28	19.424	0.347	22.078	0.052	-8.419	0.040	4.486	0.217
29	54.958	0.226	12.340	0.006	13.548	0.022	3.785	0.213
30	1.866	0.217	20.286	0.056	-8.167	0.076	4.852	0.217
31	17.148	0.240	12.478	0.013	14.059	0.060	2.601	0.264
32	4.643	0.283	-0.684	0.047	-0.720	0.049	3.687	0.285
33	1.364	0.184	22.058	0.080	-9.222	0.072	4.410	0.215
34	14.822	0.184	22.313	0.008	-8.630	0.030	3.836	0.248
35	14.347	0.184	11.822	0.012	13.690	0.054	3.434	0.285
36	2.593	0.151	18.025	0.111	-10.193	0.053	3.487	0.287
37	9.444	0.135	0.574	0.046	-3.113	0.018	2.536	0.294
38	3.042	0.135	18.323	0.025	-10.320	0.076	2.342	0.204
39	2.628	0.135	0.038	0.017	-3.399	0.051	3.223	0.199
40	7.715	0.168	17.085	0.006	-8.406	0.011	2.439	0.219
41	7.832	0.187	6.213	0.016	-7.572	0.008	2.438	0.230
42	19.714	0.218	10.831	0.019	15.230	0.014	2.184	0.235
43	2.141	0.218	23.935	0.011	14.925	0.015	2.713	0.217
44	11.634	0.372	-0.479	0.009	-0.354	0.059	2.631	0.206

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	у	$\sigma_{\rm y}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	[/s]
45	10.894	0.372	-0.408	0.013	-0.246	0.092	1.325	0.236
46	8.510	0.372	-0.225	0.008	-0.002	0.016	-2.114	0.216
47	2.631	0.203	6.100	0.011	14.124	0.053	2.552	0.222
48	3.546	0.158	10.494	0.009	15.117	0.032	1.144	0.305
49	3.893	0.422	6.004	0.023	15.063	0.050	1.733	0.241
50	9.140	0.152	5.621	0.006	-9.117	0.035	1.085	0.257
51	4.632	0.152	0.021	0.034	0.891	0.089	1.220	0.245
52	50.972	0.165	-0.068	0.008	0.022	0.013	0.098	0.293
53	11.842	0.203	6.362	0.025	-8.899	0.022	0.198	0.275
54	1.371	0.142	-0.443	0.036	0.643	0.103	1.214	0.232
55	3.310	0.096	-0.088	0.014	-0.652	0.028	0.458	0.287
56	11.663	0.287	7.616	0.044	-9.028	0.024	-0.172	0.269
57	20.318	0.196	23.048	0.034	14.016	0.030	-0.235	0.242
58	1.533	0.156	23.355	0.055	13.817	0.119	-2.154	0.203
59	3.798	0.167	24.376	0.042	12.659	0.037	0.465	0.260
60	6.689	0.442	25.621	0.031	10.037	0.072	-0.415	0.314
61	1.616	0.164	20.955	0.022	-10.963	0.030	0.706	0.229
62	9.496	0.138	25.468	0.007	12.241	0.008	0.280	0.207
63	4.539	0.245	21.180	0.018	13.893	0.043	0.438	0.246
64	10.432	0.153	21.407	0.015	-11.018	0.027	-0.221	0.260
65	5.532	0.313	7.419	0.019	-9.281	0.045	0.791	0.163
66	7.082	0.133	26.589	0.024	9.885	0.026	-2.086	0.264
67	14.307	0.176	25.811	0.012	9.762	0.006	-1.888	0.240
68	2.308	0.103	22.790	0.010	11.081	0.019	-2.525	0.271
69	3.060	0.222	22.261	0.025	11.964	0.037	-3.053	0.287
70	0.829	0.222	30.985	0.023	-9.063	0.023	-2.488	0.216
71	3.467	0.222	22.812	0.023	14.203	0.029	-3.023	0.213
72	3.822	0.115	14.091	0.033	11.216	0.026	-4.822	0.215

表 C.1 – continued

ID	Flux	(Tri	v	σ	v	σ	21	
ID		0 Flux	A.		y [m.c	0 y	<i>U</i>	
79	[J]	y] 0.115						
13	2.402	0.115	9.047	0.010	10.051	0.014	-4.020	0.208
			(9) Epc	och: 200	7/05/23			
1	25.702	0.146	7.841	0.027	-11.849	0.016	12.629	0.256
2	1.107	0.114	10.102	0.012	-12.465	0.035	14.173	0.229
3	6.094	0.205	17.046	0.013	-11.308	0.037	11.582	0.252
4	0.678	0.054	16.998	0.008	-11.216	0.019	6.976	0.206
5	0.714	0.054	7.952	0.012	-11.251	0.009	11.839	0.216
6	2.129	0.054	8.050	0.022	-11.202	0.076	9.952	0.326
7	1.278	0.102	1.374	0.013	-14.983	0.030	11.641	0.231
8	2.800	0.142	16.936	0.019	-10.977	0.063	9.510	0.347
9	10.037	0.111	18.225	0.008	-5.032	0.008	9.182	0.230
10	1.098	0.136	13.909	0.021	-7.671	0.046	9.429	0.244
11	0.919	0.140	25.416	0.016	8.782	0.036	9.188	0.215
12	1.947	0.116	26.533	0.025	7.665	0.033	8.326	0.221
13	4.446	0.308	28.053	0.033	-1.541	0.055	6.429	0.376
14	2.601	0.099	27.689	0.012	5.404	0.028	8.157	0.240
15	4.091	0.091	27.918	0.010	2.456	0.013	7.924	0.197
16	2.567	0.112	11.283	0.010	12.275	0.019	7.716	0.234
17	3.799	0.097	18.705	0.005	-13.324	0.023	7.159	0.234
18	10.834	0.101	16.963	0.005	-10.685	0.010	6.939	0.217
19	7.581	0.135	25.003	0.020	-3.593	0.065	6.379	0.242
20	0.637	0.048	16.974	0.006	-10.139	0.005	7.011	0.214
21	2.120	0.101	26.988	0.008	6.469	0.020	6.690	0.248
22	4.862	0.175	17.078	0.012	14.236	0.028	6.076	0.241
23	6.211	0.199	23.616	0.050	-8.564	0.039	6.392	0.218
24	2.182	0.120	19.593	0.017	6.247	0.027	6.143	0.258
25	15.380	0.150	11.809	0.010	13.170	0.063	5.140	0.254
26	1.296	0.159	22.764	0.028	5.434	0.033	6.160	0.216
27	3.763	0.163	17.568	0.018	13.571	0.018	5.654	0.199

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm v}$	V	$\sigma_{\rm v}$	v	σ_{v}
_	[],		- [ma	as]	[ma	us]	[km	n/s]
28	20.144	0.236	17.414	0.038	13.520	0.022	3.986	0.195
29	1.508	0.112	18.645	0.021	6.561	0.026	5.695	0.212
30	14.508	0.202	20.893	0.027	-8.171	0.030	4.789	0.241
31	2.808	0.125	17.052	0.019	13.389	0.014	5.602	0.167
32	5.442	0.272	16.996	0.050	13.466	0.064	3.882	0.303
33	17.876	0.213	22.020	0.056	-8.458	0.047	4.550	0.205
34	52.103	0.177	12.341	0.009	13.524	0.023	3.720	0.222
35	1.088	0.141	21.473	0.073	-8.762	0.141	5.294	0.217
36	1.274	0.154	15.040	0.036	-9.294	0.059	5.093	0.237
37	1.243	0.154	4.752	0.016	15.090	0.032	4.877	0.217
38	1.626	0.154	21.213	0.061	7.983	0.068	4.901	0.216
39	2.752	0.154	20.351	0.086	-8.270	0.034	4.980	0.189
40	10.755	0.149	12.467	0.024	14.044	0.045	2.529	0.278
41	5.588	0.202	-0.641	0.050	-0.656	0.037	3.795	0.266
42	2.335	0.164	17.872	0.011	-10.140	0.023	3.949	0.239
43	20.438	0.198	22.320	0.011	-8.673	0.012	3.849	0.202
44	14.427	0.198	11.828	0.012	13.677	0.057	3.455	0.278
45	2.465	0.198	12.367	0.035	12.866	0.021	3.590	0.216
46	9.216	0.150	0.583	0.049	-3.134	0.022	2.506	0.276
47	1.488	0.150	25.955	0.011	-4.593	0.038	3.367	0.243
48	3.310	0.126	18.297	0.006	-10.337	0.014	2.744	0.250
49	2.185	0.109	23.937	0.009	14.914	0.018	2.861	0.228
50	19.981	0.169	10.820	0.025	15.214	0.019	2.189	0.230
51	7.223	0.117	17.079	0.003	-8.425	0.016	2.412	0.222
52	9.123	0.139	6.199	0.028	-7.653	0.015	2.396	0.219
53	1.838	0.095	10.515	0.008	15.025	0.092	2.245	0.217
54	4.200	0.095	10.480	0.014	15.165	0.035	1.002	0.213
55	8.676	0.127	5.622	0.007	-9.143	0.035	1.087	0.255
56	10.253	0.185	6.313	0.027	-8.951	0.018	0.222	0.281

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	X	$\sigma_{\rm x}$	У	$\sigma_{\rm y}$	v	σ_v
	[J]	y]	[ma	us]	[ma	s]	[km	[s]
57	1.391	0.185	6.033	0.021	15.060	0.029	1.425	0.216
58	8.525	0.131	25.475	0.016	12.226	0.012	0.398	0.225
59	11.291	0.252	7.621	0.040	-9.072	0.017	-0.126	0.264
60	5.601	0.255	24.462	0.044	12.692	0.025	0.345	0.273
61	4.732	0.167	7.457	0.014	-9.338	0.035	0.971	0.215
62	4.312	0.217	21.172	0.019	13.937	0.039	0.493	0.247
63	49.862	0.217	-0.096	0.014	-0.017	0.011	-0.006	0.291
64	4.398	0.108	-0.005	0.009	-0.752	0.021	0.556	0.259
65	19.899	0.151	23.040	0.029	14.013	0.014	-0.320	0.252
66	4.463	0.288	21.061	0.062	-10.853	0.042	0.578	0.229
67	8.731	0.120	21.405	0.021	-11.003	0.047	-0.009	0.269
68	15.044	0.160	25.700	0.024	9.856	0.046	-0.857	0.295
69	1.701	0.160	11.468	0.009	13.982	0.029	0.158	0.208
70	1.212	0.160	-3.597	0.012	3.757	0.035	0.128	0.215
71	1.597	0.160	-0.056	0.020	0.637	0.005	-0.259	0.201
72	3.373	0.127	22.399	0.038	11.883	0.030	-2.395	0.399
73	0.987	0.127	22.820	0.032	13.346	0.061	-0.879	0.233
74	6.439	0.127	21.463	0.012	-11.099	0.010	-1.068	0.164
75	8.673	0.205	26.564	0.018	9.850	0.019	-2.155	0.265
76	1.174	0.129	23.298	0.050	13.553	0.066	-1.234	0.216
77	0.707	0.051	25.828	0.005	9.203	0.003	-1.647	0.217
78	1.394	0.101	9.638	0.010	15.495	0.017	-1.693	0.212
79	14.434	0.101	25.820	0.011	9.749	0.009	-2.197	0.238
80	2.930	0.094	22.789	0.007	11.082	0.012	-2.722	0.267
81	2.081	0.147	22.111	0.028	12.041	0.031	-2.376	0.240
82	1.315	0.099	30.975	0.018	-9.060	0.020	-2.276	0.233
83	1.829	0.099	0.342	0.018	-0.437	0.059	-2.609	0.237
84	4.423	0.099	22.791	0.016	14.163	0.018	-2.920	0.215
85	2.826	0.099	9.046	0.006	16.051	0.008	-4.641	0.212

表 C.1 – continued

				• • • • •	iiviiiaca			
ID	Flux	$\sigma_{\rm Flux}$	х	$\sigma_{\rm x}$	У	σ_{y}	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	/s]
86	4.025	0.104	14.093	0.030	11.202	0.018	-4.814	0.220
			(10) Ep	och: 200	07/05/24			
1	28.577	0.145	7.881	0.027	-11.830	0.020	12.552	0.265
2	1.036	0.168	10.071	0.030	-12.512	0.041	13.989	0.217
3	6.045	0.181	17.088	0.012	-11.284	0.028	11.453	0.261
4	0.669	0.181	7.972	0.034	-11.204	0.005	11.843	0.216
5	2.200	0.181	8.074	0.021	-11.200	0.081	9.994	0.328
6	1.215	0.103	1.400	0.027	-14.952	0.034	11.773	0.211
7	2.374	0.156	16.911	0.087	-11.082	0.027	10.085	0.217
8	1.622	0.107	16.951	0.013	-10.870	0.057	8.540	0.251
9	10.945	0.113	18.263	0.008	-5.034	0.017	9.171	0.230
10	1.132	0.113	13.969	0.014	-7.657	0.035	9.261	0.213
11	3.151	0.108	27.715	0.014	5.448	0.031	8.260	0.235
12	1.838	0.116	26.571	0.013	7.624	0.029	8.338	0.231
13	2.700	0.214	28.062	0.031	-1.659	0.064	7.533	0.294
14	3.408	0.093	27.952	0.015	2.467	0.016	7.939	0.201
15	0.886	0.093	10.634	0.025	12.501	0.041	8.355	0.217
16	2.974	0.119	11.320	0.008	12.295	0.027	7.696	0.236
17	4.368	0.103	18.734	0.007	-13.309	0.018	7.087	0.250
18	11.478	0.100	16.998	0.004	-10.675	0.009	6.941	0.210
19	2.254	0.106	27.052	0.013	6.436	0.035	6.879	0.276
20	1.054	0.103	8.820	0.011	-11.257	0.042	7.240	0.257
21	0.596	0.058	17.006	0.008	-10.122	0.027	7.023	0.216
22	8.028	0.160	25.063	0.017	-3.592	0.056	6.372	0.235
23	5.475	0.108	23.588	0.024	-8.467	0.009	6.355	0.223
24	4.666	0.122	17.113	0.004	14.245	0.016	6.169	0.225
25	2.223	0.114	19.628	0.015	6.256	0.045	6.175	0.251
26	2.566	0.155	28.281	0.018	-1.340	0.051	5.942	0.242
27	2.535	0.184	25.993	0.018	5.127	0.076	6.120	0.210

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[Jy	y]	[ma	as]	[ma	us]	[km	1/s]
28	16.144	0.135	11.841	0.012	13.188	0.067	5.141	0.253
29	1.199	0.182	22.829	0.049	5.454	0.071	6.143	0.214
30	5.393	0.212	17.685	0.121	13.677	0.020	5.634	0.189
31	9.443	0.212	17.714	0.022	13.749	0.015	4.087	0.272
32	1.237	0.109	18.675	0.016	6.545	0.020	5.686	0.210
33	3.524	0.109	17.299	0.006	13.519	0.028	2.827	0.176
34	2.457	0.184	17.042	0.014	14.748	0.113	5.626	0.184
35	14.418	0.177	20.952	0.024	-8.173	0.031	4.795	0.245
36	17.991	0.141	17.315	0.010	13.458	0.012	3.921	0.208
37	21.705	0.255	22.157	0.041	-8.482	0.030	4.238	0.252
38	56.645	0.126	12.368	0.006	13.537	0.023	3.708	0.241
39	1.603	0.166	4.758	0.019	15.022	0.046	5.055	0.237
40	1.975	0.166	20.365	0.035	-8.190	0.024	4.906	0.215
41	9.163	0.166	17.042	0.039	13.293	0.037	4.610	0.132
42	1.295	0.117	22.161	0.069	-9.330	0.045	4.416	0.216
43	3.230	0.166	-0.655	0.047	-0.769	0.040	3.935	0.268
44	16.449	0.166	22.353	0.007	-8.694	0.011	3.955	0.210
45	16.598	0.234	11.867	0.017	13.716	0.053	3.505	0.267
46	11.134	0.146	12.464	0.046	14.065	0.036	2.459	0.290
47	1.892	0.108	17.903	0.007	-10.111	0.016	3.811	0.238
48	11.827	0.238	0.640	0.049	-3.108	0.013	2.480	0.289
49	3.752	0.119	18.328	0.007	-10.349	0.013	2.779	0.255
50	21.010	0.158	10.879	0.008	15.230	0.019	2.296	0.223
51	7.209	0.113	17.114	0.007	-8.425	0.017	2.437	0.224
52	9.528	0.126	6.241	0.020	-7.622	0.017	2.382	0.216
53	2.136	0.126	23.959	0.005	14.939	0.025	2.765	0.207
54	0.953	0.126	-48.401	0.016	-27.609	0.070	2.706	0.217
55	6.745	0.149	10.546	0.018	15.137	0.068	1.566	0.254
56	10.210	0.101	5.655	0.005	-9.134	0.027	1.045	0.252

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	Х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v
	[J ₂	y]	[ma	us]	[ma	s]	[km	[s]
57	2.016	0.101	6.035	0.045	15.081	0.057	1.638	0.252
58	1.251	0.101	6.396	0.009	15.075	0.051	1.839	0.217
59	11.062	0.139	6.382	0.024	-8.975	0.027	0.056	0.274
60	7.021	0.097	25.507	0.019	12.220	0.015	0.372	0.216
61	51.971	0.119	-0.047	0.012	0.001	0.010	-0.130	0.304
62	3.889	0.119	0.014	0.034	0.845	0.116	0.990	0.207
63	0.674	0.119	-0.013	0.019	0.716	0.027	-0.749	0.216
64	3.675	0.088	-0.030	0.034	-0.703	0.028	0.395	0.295
65	11.995	0.181	7.687	0.040	-9.032	0.031	-0.108	0.269
66	4.874	0.126	7.489	0.028	-9.291	0.043	0.859	0.191
67	3.670	0.130	25.679	0.028	10.086	0.035	0.071	0.304
68	0.942	0.072	25.791	0.026	10.370	0.018	-1.858	0.214
69	21.399	0.125	23.077	0.027	14.008	0.022	-0.411	0.256
70	5.110	0.275	24.548	0.046	12.613	0.030	0.216	0.275
71	5.217	0.218	21.122	0.078	-10.848	0.019	0.544	0.215
72	3.940	0.143	21.195	0.015	13.976	0.046	0.413	0.245
73	8.654	0.112	21.456	0.018	-11.042	0.032	-0.287	0.280
74	2.806	0.112	10.510	0.009	15.238	0.019	0.631	0.191
75	1.185	0.112	11.486	0.010	13.899	0.019	0.173	0.203
76	2.940	0.182	6.924	0.086	-9.086	0.023	-0.060	0.154
77	1.931	0.176	24.101	0.022	13.623	0.089	-0.256	0.247
78	3.539	0.133	22.431	0.039	11.888	0.024	-2.243	0.376
79	1.662	0.152	22.854	0.048	14.834	0.079	-0.463	0.206
80	16.121	0.108	25.845	0.012	9.768	0.013	-1.806	0.247
81	9.199	0.202	26.591	0.030	9.859	0.025	-2.106	0.267
82	2.150	0.133	22.758	0.006	13.045	0.035	-1.744	0.193
83	1.071	0.108	9.676	0.014	15.522	0.026	-1.672	0.216
84	2.433	0.186	0.418	0.019	-0.585	0.069	-2.158	0.242
85	3.798	0.099	22.829	0.007	11.067	0.014	-2.811	0.254

表 C.1 – continued

ID	Flux	$\sigma_{ m Flux}$	х	$\sigma_{\rm x}$	У	$\sigma_{ m y}$	v	σ_v	
	[J]	y]	[ma	us]	[ma	us]	$[\rm km/s]$		
86	0.827	0.109	31.000	0.028	-9.053	0.026	-2.115	0.214	
87	1.884	0.119	22.159	0.026	12.110	0.021	-2.545	0.215	
88	4.287	0.113	14.121	0.030	11.214	0.026	-4.767	0.208	
89	3.048	0.113	9.072	0.007	16.056	0.027	-4.633	0.210	

表 C.1 – continued
参考文献

黄克谅. 2005, 类星体和活动星系核 (中国科学技术出版社)

- 陈曦. 2007, 大质量恒星形成区和恒星SiO脉泽的谱线观测研究, 博士论文, 上海 天文台
- 蔡宏兵. 2007, 利用VLBI研究活动星系核的吸收, 博士论文, 上海天文台
- Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, ApJ, 700, 597
- Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, Nature, 463, 919
- Abraham, Z. & Carrara, E. A. 1998, ApJ, 496, 172
- Abraham, Z. & Romero, G. E. 1999, A&A, 344, 61
- Acciari, V. A., Aliu, E., Arlen, T., et al. 2009, Science, 325, 444
- Agudo, I., Bach, U., Krichbaum, T. P., et al. 2007a, A&A, 476, L17
- Agudo, I., Krichbaum, T. P., Bach, U., et al. 2007b, The Innermost Regions of AGN with Future mm-VLBI (Springer-Verlag), 179
- Alef, W. & Graham, D. A. 2002, in Proceedings of the 6th EVN Symposium, ed.E. Ros, R. W. Porcas, A. P. Lobanov, & J. A. Zensus, 31
- Asada, K., Inoue, M., Uchida, Y., et al. 2002, PASJ, 54, L39
- Asada, K., Kameno, S., Shen, Z., et al. 2006, PASJ, 58, 261
- Baan, W. A., Wood, P. A. D., & Haschick, A. D. 1982, ApJL, 260, L49
- Baars, J. W. M., van der Brugge, J. F., Casse, J. L., et al. 1973, IEEE Proceedings, 61, 1258
- Baath, L. B., Rogers, A. E. E., Inoue, M., et al. 1992, A&A, 257, 31

- Bach, U., Krichbaum, T. P., Middelberg, E., Alef, W., & Zensus, A. J. 2008, in The role of VLBI in the Golden Age for Radio Astronomy, Proceedings of Science, in press (arXiv:0812.1662)
- Baldwin, J. E. & Warner, P. J. 1978, MNRAS, 182, 411
- Ball, J. A., Gottlieb, C. A., Lilley, A. E., & Radford, H. E. 1970, ApJL, 162, L203
- Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307
- Beijing Observatory Metre-Wave Radio Astronomy Group. 1986, ChA&A, 10, 3
- Blandford, R. D. & Konigl, A. 1979, ApJ, 232, 34
- Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883
- Blandford, R. D. & Znajek, R. L. 1977, MNRAS, 179, 433
- Boboltz, D. A. & Diamond, P. J. 2005, ApJ, 625, 978
- Boboltz, D. A., Diamond, P. J., & Kemball, A. J. 1997, ApJL, 487, L147
- Bower, G. C., Falcke, H., Herrnstein, R. M., et al. 2004, Science, 304, 704
- Britzen, S., Kudryavtseva, N. A., Witzel, A., et al. 2010a, A&A, 511, A57
- Britzen, S., Witzel, A., Gong, B. P., et al. 2010b, A&A, 515, A105
- Broderick, A. E., Loeb, A., & Reid, M. J. 2011, arXiv:1104.3146
- Broten, N. W., Locke, J. L., Legg, T. H., McLeish, C. W., & Richards, R. S. 1967, Nature, 215, 38
- Bujarrabal, V. 1994a, A&A, 285, 953
- Bujarrabal, V. 1994b, A&A, 285, 971
- Burbidge, G. R. 1959, ApJ, 129, 849
- Camenzind, M. 2005, MemSAIt, 76, 98

- Camenzind, M. & Krockenberger, M. 1992, A&A, 255, 59
- Caproni, A. & Abraham, Z. 2004, ApJ, 602, 625
- Caproni, A., Mosquera Cuesta, H. J., & Abraham, Z. 2004, ApJL, 616, L99
- Celotti, A. & Fabian, A. C. 1993, MNRAS, 264, 228
- Chapman, J. M. & Cohen, R. J. 1986, MNRAS, 220, 513
- Chatterjee, R., Marscher, A. P., Jorstad, S. G., et al. 2009, ApJ, 704, 1689
- Chen, X. & Shen, Z. 2008, ApJ, 681, 1574
- Chen, X., Shen, Z., Imai, H., & Kamohara, R. 2006, ApJ, 640, 982
- Chen, X., Shen, Z., & Xu, Y. 2007, ChJAA, 7, 531
- Cheung, A. C., Rank, D. M., & Townes, C. H. 1969, Nature, 221, 626
- Cheung, A. C., Rank, D. M., Townes, C. H., Thornton, D. D., & Welch, W. J. 1968, Physical Review Letters, 21, 1701
- Chiavassa, A., Lacour, S., Millour, F., et al. 2010, A&A, 511, A51
- Chiosi, C. & Maeder, A. 1986, ARA&A, 24, 329
- Churchwell, E., Witzel, A., Huchtmeier, W., et al. 1977, A&A, 54, 969
- Claussen, M. J. 2004, Science, 306, 235
- Cohen, M. H., Lister, M. L., Homan, D. C., et al. 2007, ApJ, 658, 232
- Croston, J. H., Hardcastle, M. J., Harris, D. E., et al. 2005, ApJ, 626, 733
- Curtis, H. D. 1918, Publications of Lick Observatory, 13, 9
- Dallacasa, D., Stanghellini, C., Centonza, M., & Fanti, R. 2000, A&A, 363, 887
- Danchi, W. C., Bester, M., Degiacomi, C. G., Greenhill, L. J., & Townes, C. H. 1994, AJ, 107, 1469

- Davies, J. G., Anderson, B., & Morison, I. 1980, Nature, 288, 64
- Day, F. M., Pihlström, Y. M., Claussen, M. J., & Sahai, R. 2010, ApJ, 713, 986
- Desmurs, J. F., Bujarrabal, V., Colomer, F., & Alcolea, J. 2000, A&A, 360, 189
- Diamond, P. J. & Kemball, A. J. 2003, ApJ, 599, 1372
- Diamond, P. J., Kemball, A. J., Junor, W., et al. 1994, ApJL, 430, L61
- Doeleman, S. S., Lonsdale, C. J., & Greenhill, L. J. 1998, ApJ, 494, 400
- Doeleman, S. S., Lonsdale, C. J., Kondratko, P. T., & Predmore, C. R. 2004, ApJ, 607, 361
- Doeleman, S. S., Phillips, R. B., Rogers, A. E. E., et al. 2002, in Proceedings of the 6th EVN Symposium, ed. E. Ros, R. W. Porcas, A. P. Lobanov, & J. A. Zensus, 223
- Doeleman, S. S., Phillips, R. B., Rogers, A. E. E., et al. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 340, Future Directions in High Resolution Astronomy, ed. J. Romney & M. Reid, 605
- Doeleman, S. S., Weintroub, J., Rogers, A. E. E., et al. 2008, Nature, 455, 78
- Elitzur, M., ed. 1992, Astrophysics and Space Science Library, Vol. 170, Astronomical masers
- Fan, J. H. & Lin, R. G. 1999, ApJS, 121, 131
- Fan, J. H., Lin, R. G., Xie, G. Z., et al. 2002, A&A, 381, 1
- Feng, S., Shen, Z., Cai, H., et al. 2006, A&A, 456, 97
- Fomalont, E. B. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 180, Synthesis Imaging in Radio Astronomy II, ed. G. B. Taylor, C. L. Carilli, & R. A. Perley, 301

- Frater, R. H., Brooks, J. W., & Whiteoak, J. B. 1992, Journal of Electrical and Electronics Engineering Australia, 12, 103
- Gabuzda, D. C. 2003, in Astronomical Society of the Pacific Conference Series, Vol. 299, High Energy Blazar Astronomy, ed. L. O. Takalo & E. Valtaoja, 99
- Gabuzda, D. C., Mullan, C. M., Cawthorne, T. V., Wardle, J. F. C., & Roberts, D. H. 1994a, ApJ, 435, 140
- Gabuzda, D. C., Pushkarev, A. B., & Cawthorne, T. V. 1999, MNRAS, 307, 725
- Gabuzda, D. C., Sitko, M. L., & Smith, P. S. 1996, AJ, 112, 1877
- Gabuzda, D. C., Wardle, J. F. C., Roberts, D. H., Aller, M. F., & Aller, H. D. 1994b, ApJ, 435, 128
- Ghisellini, G. & Tavecchio, F. 2009, MNRAS, 397, 985
- Giroletti, M., Giovannini, G., Cotton, W. D., et al. 2008, A&A, 488, 905
- Gómez, J. L., Marscher, A. P., Jorstad, S. G., Agudo, I., & Roca-Sogorb, M. 2008, ApJL, 681, L69
- Gonidakis, I., Diamond, P. J., & Kemball, A. J. 2010, MNRAS, 406, 395
- Greenhill, L. J., Colomer, F., Moran, J. M., et al. 1995, ApJ, 449, 365
- Greve, A., Könönen, P., Graham, D. A., et al. 2002, A&A, 390, L19
- Greve, A., Torres, M., Wink, J. E., et al. 1995, A&A, 299, L33
- Guilloteau, S., Omont, A., & Lucas, R. 1987, A&A, 176, L24
- Habing, H. J. 1996, A&ARv, 7, 97
- Hardee, P. E. 2003, ApJ, 597, 798
- Hardee, P. E. & Norman, M. L. 1988, ApJ, 334, 70
- Herrnstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, Nature, 400, 539

- Hirabayashi, H., Hirosawa, H., Kobayashi, H., et al. 1998, Science, 281, 1825
- Ho, P. T. P., Moran, J. M., & Lo, K. Y. 2004, ApJL, 616, L1
- Högbom, J. A. 1974, A&AS, 15, 417
- Homan, D. C., Kovalev, Y. Y., Lister, M. L., et al. 2006, ApJL, 642, L115
- Homan, D. C. & Lister, M. L. 2006, AJ, 131, 1262
- Homan, D. C., Ojha, R., Wardle, J. F. C., et al. 2001, ApJ, 549, 840
- Hovatta, T., Nieppola, E., Tornikoski, M., et al. 2008, A&A, 485, 51
- Hovatta, T., Valtaoja, E., Tornikoski, M., & Lähteenmäki, A. 2009, A&A, 494, 527
- Huang, L., Takahashi, R., & Shen, Z. 2009, ApJ, 706, 960
- Hughes, P. A. 2005, ApJ, 621, 635
- Hughes, P. A., Aller, H. D., & Aller, M. F. 1991, ApJ, 374, 57
- Humphreys, E. M. L. & Gray, M. D. 2004, in European VLBI Network on New Developments in VLBI Science and Technology, ed. R. Bachiller, F. Colomer, J.-F. Desmurs, & P. de Vicente, 177–182
- Humphreys, E. M. L., Gray, M. D., Yates, J. A., et al. 2002, A&A, 386, 256
- Iguchi, S., Fujisawa, K., Kameno, S., et al. 2000, PASJ, 52, 1037
- Impellizzeri, C. M. V., McKean, J. P., Castangia, P., et al. 2008, Nature, 456, 927
- Ivanov, P. B., Igumenshchev, I. V., & Novikov, I. D. 1998, ApJ, 507, 131
- Jansky, K. G. 1933, Proc. IRE., 21, 1387
- Jones, T. W., O'dell, S. L., & Stein, W. A. 1974, ApJ, 192, 261
- Jorstad, S. G., Marscher, A. P., Mattox, J. R., et al. 2001, ApJS, 134, 181

- Junor, W., Biretta, J. A., & Livio, M. 1999, Nature, 401, 891
- Kadler, M., Hughes, P. A., Ros, E., Aller, M. F., & Aller, H. D. 2006, A&A, 456, L1
- Kamohara, R., Deguchi, S., Miyoshi, M., & Shen, Z. 2005, PASJ, 57, 341
- Kardashev, N. S. 1962, Soviet Astronomy, 6, 317
- Kellermann, K. I., Kovalev, Y. Y., Lister, M. L., et al. 2007, Ap&SS, 311, 231
- Kellermann, K. I., Lister, M. L., Homan, D. C., et al. 2004, ApJ, 609, 539
- Kellermann, K. I. & Moran, J. M. 2001, ARA&A, 39, 457
- Kellermann, K. I. & Pauliny-Toth, I. I. K. 1969, ApJL, 155, L71
- Kelly, B. C., Hughes, P. A., Aller, H. D., & Aller, M. F. 2003, ApJ, 591, 695
- Kemball, A. J. 2007, in IAU Symposium, Vol. 242, IAU Symposium, ed. J. M. Chapman & W. A. Baan, 236–245
- Kholopov, P. N., Samus', N. N., Kazarovets, E. V., & Kireeva, N. N. 1987, Information Bulletin on Variable Stars, 3058, 1
- Kovalev, Y. Y., Lobanov, A. P., Pushkarev, A. B., & Zensus, J. A. 2008, A&A, 483, 759
- Krichbaum, T. P., Agudo, I., Bach, U., Witzel, A., & Zensus, J. A. 2006a, in Proceedings of the 8th European VLBI Network Symposium, p2
- Krichbaum, T. P., Bach, U., Graham, D. A., et al. 2008a, in The role of VL-BI in the Golden Age for Radio Astronomy, Proceedings of Science, in press (arXiv:0812.4211)
- Krichbaum, T. P., Graham, D. A., Alef, W., et al. 2004, in European VLBI Network on New Developments in VLBI Science and Technology, ed. R. Bachiller, F. Colomer, J.-F. Desmurs, & P. de Vicente, 15–18

- Krichbaum, T. P., Graham, D. A., Alef, W., et al. 2002, in Proceedings of the 6th EVN Symposium, ed. E. Ros, R. W. Porcas, A. P. Lobanov, & J. A. Zensus, 125
- Krichbaum, T. P., Graham, D. A., Bremer, M., et al. 2006b, Journal of Physics Conference Series, 54, 328
- Krichbaum, T. P., Graham, D. A., Greve, A., et al. 1997, A&A, 323, L17
- Krichbaum, T. P., Graham, D. A., Witzel, A., et al. 1998, A&A, 335, L106
- Krichbaum, T. P., Lee, S. S., Lobanov, A. P., Marscher, A. P., & Gurwell, M. A. 2008b, in Astronomical Society of the Pacific Conference Series, Vol. 386, Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, ed. T. A. Rector & D. S. De Young, 186
- Kudryavtseva, N. A., Britzen, S., Witzel, A., et al. 2011, A&A, 526, A51
- Lee, S., Lobanov, A. P., Krichbaum, T. P., et al. 2008, AJ, 136, 159
- Likkel, L. & Morris, M. 1988, ApJ, 329, 914
- Lister, M. L., Aller, H. D., Aller, M. F., et al. 2009a, AJ, 137, 3718
- Lister, M. L., Cohen, M. H., Homan, D. C., et al. 2009b, AJ, 138, 1874
- Lister, M. L. & Homan, D. C. 2005, AJ, 130, 1389
- Liu, Y., Jiang, D. R., Shen, Z., & Karouzos, M. 2010, A&A, 522, A5
- Lo, K. Y. 2005, ARA&A, 43, 625
- Lobanov, A. 2010, arXiv:1010.2856
- Lobanov, A. P. 1998a, A&AS, 132, 261
- Lobanov, A. P. 1998b, A&A, 330, 79
- Lobanov, A. P., Krichbaum, T. P., Graham, D. A., et al. 2000, A&A, 364, 391

- Lobanov, A. P. & Roland, J. 2005, A&A, 431, 831
- Lobanov, A. P. & Zensus, J. A. 1999, ApJ, 521, 509
- Lobanov, A. P. & Zensus, J. A. 2001, Science, 294, 128
- Lockett, P. & Elitzur, M. 1992, ApJ, 399, 704
- Lockwood, G. W. & Wing, R. F. 1982, MNRAS, 198, 385
- Lu, R., Krichbaum, T. P., Eckart, A., et al. 2011a, A&A, 525, A76
- Lu, R., Shen, Z., Krichbaum, T. P., et al. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 373, The Central Engine of Active Galactic Nuclei, ed. L. C. Ho & J.-M. Wang, 237
- Lu, R.-S., Krichbaum, T. P., & Zensus, J. A. 2011b, MNRAS, submitted
- Ly, C., Walker, R. C., & Junor, W. 2007, ApJ, 660, 200
- Marscher, A. P. 1983, ApJ, 264, 296
- Marscher, A. P. & Gear, W. K. 1985, ApJ, 298, 114
- Marscher, A. P., Jorstad, S. G., D'Arcangelo, F. D., et al. 2008, Nature, 452, 966
- Marscher, A. P., Jorstad, S. G., Larionov, V. M., et al. 2010, ApJL, 710, L126
- Marvel, K. B., Diamond, P. J., & Kemball, A. J. 1998, in Astronomical Society of the Pacific Conference Series, Vol. 144, IAU Colloq. 164: Radio Emission from Galactic and Extragalactic Compact Sources, ed. J. A. Zensus, G. B. Taylor, & J. M. Wrobel, 253
- Mattox, J. R., Hartman, R. C., & Reimer, O. 2001, ApJS, 135, 155
- McCready, L. L., Pawsey, J. L., & Payne-Scott, R. 1947, Royal Society of London Proceedings Series A, 190, 357
- McIntosh, G. C. & Predmore, C. R. 1993, ApJL, 404, L71

- McIntosh, G. C., Predmore, C. R., Moran, J. M., et al. 1989, ApJ, 337, 934
- McIntosh, G. C., Predmore, C. R., & Patel, N. A. 1994, ApJL, 428, L29
- Meier, D. L. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 402, Approaching Micro-Arcsecond Resolution with VSOP-2: Astrophysics and Technologies, ed. Y. Hagiwara, E. Fomalont, M. Tsuboi, & Y. Murata, 342
- Meier, D. L. 2011, in IAU Symposium, Vol. 275, IAU Symposium, ed. G. E. Romero, R. A. Sunyaev, & T. Belloni, 13–23
- Michelson, A. A. & Pease, F. G. 1921, ApJ, 53, 249
- Mills, B. Y., Aitchison, R. E., Little, A. G., & Sheridan, K. V. 1963, Proc. I. R. E., 24, 156
- Mills, B. Y., Little, A. G., Sheridan, K. V., & Slee, O. B. 1958, Proceedings of the Institute of Radio Engineers, 46, 67
- Miyoshi, M., Matsumoto, K., Kameno, S., Takaba, H., & Lwata, T. 1994, Nature, 371, 395
- Miyoshi, M., Moran, J., Herrnstein, J., et al. 1995, Nature, 373, 127
- Mizuno, Y., Lyubarsky, Y., Nishikawa, K., & Hardee, P. E. 2009, ApJ, 700, 684
- Monnier, J. D., Millan-Gabet, R., Tuthill, P. G., et al. 2004, ApJ, 605, 436
- Moran, J. M., Crowther, P. P., Burke, B. F., et al. 1967, Science, 157, 676
- Murakawa, K., Yates, J. A., Richards, A. M. S., & Cohen, R. J. 2003, MNRAS, 344, 1
- Nieppola, E., Hovatta, T., Tornikoski, M., et al. 2009, AJ, 137, 5022
- Pacholczyk, A. G. 1970, Radio astrophysics. Nonthermal processes in galactic and extragalactic sources (Series of Books in Astronomy and Astrophysics; San Francisco, CA: Freeman)

- Padin, S., Woody, D. P., Hodges, M. W., et al. 1990, ApJL, 360, L11
- Pawsey, J. L., Payne-Scott, R., & McCready, L. L. 1946, Nature, 157, 158
- Pearson, T. J. & Readhead, A. C. S. 1984, ARA&A, 22, 97
- Pearson, T. J., Unwin, S. C., Cohen, M. H., et al. 1981, Nature, 290, 365
- Perucho, M., Lobanov, A. P., Martí, J., & Hardee, P. E. 2006, A&A, 456, 493
- Phillips, R. B., Straughn, A. H., Doeleman, S. S., & Lonsdale, C. J. 2003, ApJL, 588, L105
- Pijpers, F. P. 1990, A&A, 238, 256
- Pijpers, F. P., Pardo, J. R., & Bujarrabal, V. 1994, A&A, 286, 501
- Rantakyro, F. T., Baath, L. B., Backer, D. C., et al. 1998, A&AS, 131, 451
- Readhead, A. C. S. 1994, ApJ, 426, 51
- Readhead, A. C. S., Mason, C. R., Moffet, A. T., et al. 1983, Nature, 303, 504
- Readhead, A. C. S. & Wilkinson, P. N. 1978, ApJ, 223, 25
- Reber, G. 1940, ApJ, 91, 621
- Rector, T. A. & Stocke, J. T. 2003, AJ, 125, 2447
- Rees, M. J. 1966, Nature, 211, 468
- Reid, M. J. 1995, in Astronomical Society of the Pacific Conference Series, Vol.
 82, Very Long Baseline Interferometry and the VLBA, ed. J. A. Zensus, P. J. Diamond, & P. J. Napier, 209
- Reid, M. J. 2002, in IAU Symposium, Vol. 206, Cosmic Masers: From Proto-Stars to Black Holes, ed. V. Migenes & M. J. Reid, 506
- Reid, M. J. & Brunthaler, A. 2004, ApJ, 616, 872
- Reid, M. J. & Menten, K. M. 2007, ApJ, 671, 2068

- Reynolds, C. S., Fabian, A. C., Celotti, A., & Rees, M. J. 1996, MNRAS, 283, 873
- Richards, A. M. S., Bains, I., Bartkiewicz, A., et al. 2007, in IAU Symposium, Vol. 242, IAU Symposium, ed. J. M. Chapman & W. A. Baan, 261–265
- Rioja, M. J., Dodson, R., Kamohara, R., et al. 2008, PASJ, 60, 1031
- Rogers, A. E. E., Doeleman, S. S., & Moran, J. M. 1995, AJ, 109, 1391
- Rogers, A. E. E., Hinteregger, H. F., Whitney, A. R., et al. 1974, ApJ, 193, 293
- Roland, J., Britzen, S., Kudryavtseva, N. A., Witzel, A., & Karouzos, M. 2008, A&A, 483, 125
- Ros, E., Zensus, J. A., & Lobanov, A. P. 2000, A&A, 354, 55
- Roy, A., Rottmann, H., Teuber, U., & Keller, R. 2006, in Proceedings of the 8th European VLBI Network Symposium, p58
- Rydbeck, O. E. H., Elldér, J., & Irvine, W. M. 1973, Nature, 246, 466
- Ryle, M. 1952, Royal Society of London Proceedings Series A, 211, 351
- Ryle, M. 1962, Nature, 194, 517
- Ryle, M. & Hewish, A. 1955, Mem. R. Astron. Soc., 67, 97
- Ryle, M., Hewish, A., & Shakeshaft, J. 1959, IEEE Transactions on Antennas and Propagation, 7, 120
- Ryle, M., Smith, F. G., & Elsmore, B. 1950, MNRAS, 110, 508
- Savolainen, T. & Kovalev, Y. Y. 2008, A&A, 489, L33
- Savolainen, T., Ros, E., Porcas, R. W., & Zensus, J. A., eds. 2010, Fermi meets Jansky - AGN in Radio and Gamma Rays, Proceedings of a Workshop held 21-23 June, 2010 at the Max-Planck-Institut für Radioastronomie, Bonn, Germany.

- Savolainen, T., Wiik, K., Valtaoja, E., Jorstad, S. G., & Marscher, A. P. 2002, A&A, 394, 851
- Savolainen, T., Wiik, K., Valtaoja, E., et al. 2006, ApJ, 647, 172
- Scheuer, P. A. G. & Readhead, A. C. S. 1979, Nature, 277, 182
- Schwab, F. R. 1980, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Vol. 231, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. W. T. Rhodes, 18–25
- Shen, Z., Lo, K. Y., Liang, M., Ho, P. T. P., & Zhao, J. 2005, Nature, 438, 62
- Shibata, K. M., Chung, H., Kameno, S., et al. 2004, PASJ, 56, 475
- Shklovskii, I. S. 1964, Soviet Astronomy, 7, 748
- Sikora, M., Begelman, M. C., Madejski, G. M., & Lasota, J. 2005, ApJ, 625, 72
- Snyder, L. E. & Buhl, D. 1974, ApJL, 189, L31
- Snyder, L. E., Buhl, D., Zuckerman, B., & Palmer, P. 1969, Physical Review Letters, 22, 679
- Soria-Ruiz, R., Alcolea, J., Colomer, F., Bujarrabal, V., & Desmurs, J. 2007, A&A, 468, L1
- Soria-Ruiz, R., Alcolea, J., Colomer, F., et al. 2004, A&A, 426, 131
- Stanek, K. Z., Knapp, G. R., Young, K., & Phillips, T. G. 1995, ApJS, 100, 169
- Steffen, W., Zensus, J. A., Krichbaum, T. P., Witzel, A., & Qian, S. J. 1995, A&A, 302, 335
- Stickel, M., Fried, J. W., & Kuehr, H. 1988, A&A, 191, L16
- Stirling, A. M., Cawthorne, T. V., Stevens, J. A., et al. 2003, MNRAS, 341, 405
- Suárez, O., Gómez, J. F., & Miranda, L. F. 2008, ApJ, 689, 430

- Szymczak, M., Cohen, R. J., & Richards, A. M. S. 1998, MNRAS, 297, 1151
- Szymczak, M., Wolak, P., Gérard, E., & Richards, A. M. S. 2010, A&A, 524, A99
- Tateyama, C. E. & Kingham, K. A. 2004, ApJ, 608, 149
- Thompson, A. R., Clark, B. G., Wade, C. M., & Napier, P. J. 1980, ApJS, 44, 151
- Thompson, A. R., Moran, J. M., & Swenson, Jr., G. W. 2001, Interferometry and Synthesis in Radio Astronomy, 2nd Edition (New York : Wiley)
- Torniainen, I., Tornikoski, M., Teräsranta, H., Aller, M. F., & Aller, H. D. 2005, A&A, 435, 839
- Unwin, S. C., Cohen, M. H., Biretta, J. A., et al. 1985, ApJ, 289, 109
- Unwin, S. C., Cohen, M. H., Pearson, T. J., et al. 1983, ApJ, 271, 536
- Unwin, S. C., Wehrle, A. E., Lobanov, A. P., et al. 1997, ApJ, 480, 596
- Urry, C. M. & Padovani, P. 1995, PASP, 107, 803
- Valtaoja, E., Terasranta, H., Urpo, S., et al. 1992, A&A, 254, 71
- van der Laan, H. 1966, Nature, 211, 1131
- Vlahakis, N. & Königl, A. 2004, ApJ, 605, 656
- Vlemmings, W. H. T., Humphreys, E. M. L., & Franco-Hernández, R. 2011, ApJ, 728, 149
- Vlemmings, W. H. T., van Langevelde, H. J., & Diamond, P. J. 2005, A&A, 434, 1029
- Wagner, S. J. & Witzel, A. 1995, ARA&A, 33, 163
- Walker, R. C., Dhawan, V., Romney, J. D., Kellermann, K. I., & Vermeulen, R. C. 2000, ApJ, 530, 233

- Wardle, J. F. C., Homan, D. C., Ojha, R., & Roberts, D. H. 1998, Nature, 395, 457
- Weaver, H., Williams, D. R. W., Dieter, N. H., & Lum, W. T. 1965, Nature, 208, 29
- Whiteoak, J. B. & Gardner, F. F. 1974, ApL, 15, 211
- Willett, K. W., Darling, J., Spoon, H. W. W., Charmandaris, V., & Armus, L. 2011, ApJ, 730, 56
- Wright, M. 1988, in IAU Symposium, Vol. 129, The Impact of VLBI on Astrophysics and Geophysics, ed. M. J. Reid & J. M. Moran, 93
- Yates, J. A. & Cohen, R. J. 1994, MNRAS, 270, 958
- Yi, J., Booth, R. S., Conway, J. E., & Diamond, P. J. 2005, A&A, 432, 531
- Zavala, R. T. & Taylor, G. B. 2004, ApJ, 612, 749
- Zensus, J. A. 1997, ARA&A, 35, 607
- Zensus, J. A., Diamond, P. J., & Napier, P. J., eds. 1995, Astronomical Society of the Pacific Conference Series, Vol. 82, Very Long Baseline Interferometry and the VLBA (San Francisco: ASP)

发表文章目录

Lu, R.-S., Shen, Z.-Q., & Krichbaum T. P. 2011, Science & Technology Review, 29(07) (in Chinese)

Lu, R.-S., Krichbaum, T. P., & Zensus, J. A. 2011, MNRAS, submitted

Lu, R.-S., Krichbaum, T. P., Eckart, A., König, S., Kunneriath, D., Witzel, G., Witzel, A., & Zensus, J. A. 2011, A&A, 525, A76

Kunneriath, D., et al. 2010, A&A, 517, A46

Eckart, A., et al. 2008, A&A, 492, 337

Lu, R.-S., Krichbaum, T. P., Eckart, A., König, S., Kunneriath, D., Witzel, G., Witzel, A., & Zensus, J. A. 2008, Journal of Physics Conference Series, 131, 012059

Kunneriath, D., et al. 2008, Journal of Physics Conference Series, 131, 012006

Eckart, A., et al. 2008, Journal of Physics Conference Series, 131, 012002

Zamaninasab, M., et al. 2008, MemSAIt, 79, 1054

Lu, R.-S., Shen, Z.-Q., Krichbaum, T. P., Alef, W., Iguchi, S., Kameno, S., & Titus, M. 2007, The Central Engine of Active Galactic Nuclei, 373, 237

Feng, S.-W., Shen, Z.-Q., Cai, H.-B., Chen, X., Lu, R.-S., & Huang, L. 2006, A&A, 456, 97

简 历

基本情况

路如森,男,河北省海兴县人,1979年7月出生,中国科学院上海天文台 在读博士研究生。

教育状况

- 2003年9月至2011年6月,中国科学院上海天文台,硕博连读研究生,专业:天体物理。
- 2007年6月至2010年7月,马克思普朗克射电天文研究所,国际马克思 普朗克天文和天体物理研究学校(马克思普朗克射电天文研究所、波 恩大学、科隆大学合办),博士(科隆大学),专业:实验物理。
- 1997年9月至2001年7月,河北师范大学物理系,本科,专业:物理教 育。

工作经历

2010年7月至2011年6月,马克思普朗克射电天文研究所,博士后。2001年9月至2003年7月,河北黄骅中学,物理教师。

研究兴趣

射电天文, 致密射电源的高频 VLBI 观测, 毫米波 VLBI, 恒星脉泽的高分辨率 VLBI 观测研究。

联系方式

通讯地址:上海市南丹路 80 号,中科院上海天文台

邮编: 200030

E-mail: rslu@shao.ac.cn