Micro-arcsec scale imaging of Black Holes and Jets: Global millimeter-VLBI with ALMA

> T.P.Krichbaum, A. Roy and J.A. Zensus (on behalf of the team)

> > Max-Planck-Institut für Radioastronomie Bonn, Germany

> > > tkrichbaum@mpifr.de

people involved:

- MPIfR: W. Alef, U. Bach, A. Bertarini, T. Krichbaum,
 - H. Rottmann, A. Roy, J. Wagner, J.A. Zensus, et al.
- APEX: R. Güsten, K. Menten, D. Muders, et al.
- IRAM: M. Bremer, P. Cox, A. Grosz, K.-F. Schuster, S. Sanchez, et al.
- OSO: M. Lindqvist, I. Marti-Vidal, H. Olofsson, M. Pantaleev, et al.
- INAF: G. Tuccari, et al.
- ESO: R. Laing, G. Wieching, et al.
- 1mm VLBI, collaboration with:
- Haystack: R. Capallo, G. Crew, S. Doeleman, V. Fish, R. Lu, M. Titus, et al.
- <u>Carma:</u> G. Bower, R. Plambeck, M. Wright, et al.
- JCMT: P. Friberg, R. Tilanus, et al.
- <u>SMA:</u> R. Blundell, J. Weintroub, K. Young, et al.
- <u>SMTO:</u> R. Freund, D. Marrone, P. Strittmatter, L. Ziurys et al.

Scientific Motivation:

Detailed understanding of initial jet formation, acceleration and collimation. Image region around SMBHs, test GR near event horizon and test jet launching models.

Atmospheric windows for mm-/sub-mm VLBI

for 1mm VLBI: H > 3000m, water vapor < 2mm

atmospheric windows allow mm-VLBI in the following bands:

- 43 GHz (SiO) AB1 31 45 GHz VLBA, VERA, HSA, EVN, regular
- 86 GHz (SiO) AB3 84 116 GHz GMVA, VLBA, regular
- 129/150 GHz AB4 125 163 GHz pilot studies, transatlantic fringes established
- 215/230 GHz AB6 211 275 GHz US+IRAM+APEX, regular
- 345 GHz AB7 275 373 GHz planned

The Global Millimeter VLBI Array (GMVA)

Imaging with ~40 μ as resolution at 86 GHz

Baseline Sensitivity

in Europe:

<u>10 – 75 mJy</u>

in US:

<u>25 – 75 mJy</u>

transatlantic:

<u>10 – 75 mJy</u>

Array:

<u>0.3 – 1 mJy / hr</u>

(assume 7σ , 100sec, 2 Gbps)

http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm

- Europe: Effelsberg (100m), Pico Veleta (30m), Plateau de Bure (35m), Onsala (20m), Metsähovi (14m), Yebes (40m), planned: KVN, SRT, ALMA, ...
- USA: 8 x VLBA (25m), GBT (100m), planned: LMT (50m)

Existing VLBI arrays observing at mm-wavelength

- 9mm (32 GHz): DSN+EB+Geo-VLBI telescopes
- 7mm (43 GHz): HSA, VLBA, EVN, Vera + KVN
- 3mm (86 GHz): GMVA, VLBA
- 2mm (129/150 GHz): IRAM+SMTO+Metsahovi
- 1mm (230 GHz): IRAM+APEX+SMTO+CARMA+SMA/JCMT once

planned regular regular fringes in early 2000

once per year

new results from global 3mm VLBI with the GMVA:

see posters: J. Hodgson et al. (OJ287)

B. Boccardi et al. (Cygnus A)

VLBA 43 GHz

Size of jet base may be too small for magnetic sling-shot acceleration. Evidence for direct coupling to BH spin ? \rightarrow a GR-MHD Dynamo ?

Blandford – Payne mechanism:

centrifugal acceleration in magnetized accretion disk wind

BP versus BZ mechanism

Blandford – Znajek mechanism:

electromagnetic extraction of rotational energy from Kerr BH

measure

Brightness temperature:

$$T_{\rm b,s} = \frac{2\ln 2}{\pi k_{\rm B}} \frac{S_{\rm tot}\lambda^2}{d^2} (1+z)$$

Figure adopted from A. Marscher (1995)

Measure brightness temperature to discriminate between jet models and to determine jet acceleration

study jet formation and acceleration using mm-VLBI with ALMA

Innermost stable circular orbit (ISCO)

Event Horizon

What is seen: the whole ISCO

a hot spot ?

or

New size estimate of M87's jet nozzle from 3 station VLBI at 230 GHz (4000 km baseline length)

Simulation of onset of jet near BH image courtesy: A. E. Broderick

event horizon size and jet width depend on BH spin !

component size < (5.5 ± 0.4) R_s

Doeleman et al. 2012, Science

Competing Jet Models

synchrotron self-absorbed conical jet (Blandford-Königl jet)

Figure from Hada et al. 2011, Nature

stratified (MHD) jet with moving hot spots or shocks

still unclear of what is seen at 1mm, need better map

Fringe detection with APEX at 230 GHz (May 7, 2012)

existing station

1mm fringes established

First VLBI Fringes with the Apex telescope at 230 GHz (3C279, May 2012)

Roy et al. 2012, Krichbaum et al. 2012, Wagner et al. 2013

VLBI operation at APEX

Michael Lindqvist & Neil Nagar on Cerro Chajnantor.

Fixing problem in pressure housing for the MK5 disks.(Jan Wagner)

Recorded modules ready for transport down at end of session. (Alan Roy & Michael Lindqvist)

North-South extension in 3C279 confirmed by 3mm VLBI

base of jet is transversely resolved and has a width of ~1 pc (~10⁴ R_S) size of individual components (emission regions) < 0.1 pc (1000 R_S)

composition: tkrichbaum@mpifr

Development of a ALMA Beam-former for Ultra High Resolution VLBI and Phased Array Science

The Alma Phasing Project (APP): An international collaboration

Image Black Holes and the origin of jets with submillimeter VLBI and ALMA

- achieve 10-25 micro-arcsecond resolution at sub-mm wavelengths
- image Sgr A* and M87 with a few R_G resolution (<u>BH imaging and GR-effects</u>)
- study jet formation and acceleration in nearby Radio-Galaxies (jet-disk connection, outburst ejection relations, etc.)
- study AGN and their SMBHs at high redshifts (cosmological evolution of SMBHs)
- establish a global sub-mm VLBI array: PV, PdBI, SMTO, Hawai, Carma, LMT, SPT, APEX/ ALMA (Event Horizon Telescope).
- the large collectiong area of ALMA is needed to reach <u>milli-Jansky sensitivity</u>

