# The Black Hole – Jet Connection

# Study of Active Galactic Nuclei using global mm-/submm-VLBI

# T.P.Krichbaum

# (on behalf of the European mm-VLBI team)





tkrichbaum@mpifr.de



#### people involved in the European 1mm VLBI effort:

- <u>MPIfR:</u> W. Alef, U. Bach, A. Bertarini, D. Graham, T. Krichbaum, H. Rottmann, A. Roy, J. Wagner, J.A. Zensus, et al.
- IRAM: M. Bremer, P. Cox, C. Kramer, S. Sanchez, K. Schuster, M. Torres, et al.
- OSO: M. Lindqvist, I. Marti-Vidal, H. Olofsson, et al.
- INAF: G. Tuccari
- APEX: R. Güsten, K. Menten, D. Muders, G. Wieching, et al.

in collaboration with:

- <u>US-EHT:</u> S. Doeleman et al. (Haystack + SMA/JCMT + Carma)
- <u>SMTO:</u> L. Ziurys, P. Strittmatter, et al.

science:

Boston: A. Marscher, S. Jorstad, et al.

# 1mm-VLBI: Sources detected in early days with PV-PdB

1994-1995:

early detection of ~ 10 mm-bright sources at 215 GHz on the PV-PdB baseline

1mm VLBI looks promising and is doable or many AGN!

Greve et al. Krichbaum et al.

|        |                                         | 3MM                        |                              | 1MM |     | correl. flux                 |                                                                                      |             |                           |
|--------|-----------------------------------------|----------------------------|------------------------------|-----|-----|------------------------------|--------------------------------------------------------------------------------------|-------------|---------------------------|
| Date   | Date Source                             |                            | $S_t(86)$ SNR <sub>max</sub> |     |     | $S_t(215)$                   | SNR <sub>max</sub>                                                                   | $S_{c}(86)$ | $S_{c}(215)$              |
|        | Baseline                                |                            | XP                           | BX  | BP  |                              | XP                                                                                   | XP          | XP                        |
|        |                                         | [Jy]                       |                              |     |     | [Jy]                         |                                                                                      | [Jy]        | [Jy]                      |
| Oct 94 | $0528 \pm 134$                          | 5.0                        | 81                           |     |     |                              | NOF                                                                                  | 3.2         |                           |
| 000.01 | 4C39 25                                 | 6.5                        | 28                           |     |     |                              | 1101                                                                                 | 1.6         |                           |
|        | $1749 \pm 096$                          | 5.2                        | 52                           |     |     |                              |                                                                                      | 3.2         |                           |
|        | SGR A                                   | 7.1                        | 19                           |     |     |                              |                                                                                      | 1.1         |                           |
|        | 1823 + 568                              | 2.3                        | 49                           |     |     |                              |                                                                                      | 1.6         |                           |
|        | 1921-293                                | 12.7                       | 105                          |     |     |                              |                                                                                      | 6.0         |                           |
|        | 2145 + 067                              | 7.1                        | 184                          |     |     |                              | NOF                                                                                  | 4.0-5.0     |                           |
|        | 3C454.3                                 | 7.1                        | 107                          |     |     |                              | NOF                                                                                  | 4.5         |                           |
| Dec.94 | 3C273B<br>3C279<br>1823+568<br>2145+067 | 23.5<br>16.0<br>2.6<br>6.9 | 136                          |     |     | $13.5 \\ 10.5 \\ 1.5 \\ 5.6$ | $     \begin{array}{c}       10 \\       10 \\       <5 \\       7     \end{array} $ | 3.2-4.2     | 1.6<br>2.4<br><0.9<br>1.0 |
| Mar.95 | 0528+134<br>4C39.25                     | 6.0<br>6.6                 | 350                          | 156 | 128 | 3.3<br>3.5                   | <5                                                                                   | 4-5         | < 0.4                     |
|        | 3C273B                                  | 17.1                       | 342                          | 138 | 251 | 9.2                          | 7                                                                                    | 3.5-5       | 0.8                       |
|        | 3C279                                   | 19.9                       | 988                          | 438 | 266 | 11.0                         | 35                                                                                   | 13-14.5     | 3-4.5                     |
|        | 1334-127                                | 6.0                        |                              |     |     | 3.2                          | 12                                                                                   |             | 1.0                       |
|        | 3C345                                   | 6.2                        |                              |     |     | 3.0                          | 6(?)                                                                                 |             | < 0.4                     |
|        | 1749 + 096                              | 6.2                        |                              |     |     | 3.9                          | 11                                                                                   |             | 1.0                       |
|        | NRAO530                                 | 11.2                       | 140                          | 191 | 36  | 6.2                          | 11                                                                                   | 8           | 1.2                       |
|        | SGR A                                   | 7.8                        | 30                           | 16  | 6   | 4.2                          | 6(?)                                                                                 | 1.5         | 0.8                       |
|        | 1921-293                                | 13.0                       |                              |     |     | 6.4                          | 7                                                                                    |             | 1.0                       |

First transatlantic detections with VLBI at 230 GHz in 2003:

(PV – PdB – HHT baselines):

short baselines:  $SNR : \le 25$ long baseline: SNR : 6 - 7

Two Blazars detected at 6.4 Gλ:

3C454.3 and 0716+714

for 3C454.3 (z = 0.859)

- v' = 428 GHz (in source rest frame)
- $\theta \le 16 \ \mu as = 0.1 \ pc = 1050 \ R_S^{-9}$

SSA:  $B \le 1 G \rightarrow \gamma > 600$ 

| Source   | PdBI - PV | HHT - PV |
|----------|-----------|----------|
| NRAO150  | 10.7      |          |
| 3C120    | 8.2       |          |
| 0420-014 | 24.9      |          |
| 0736+017 | 7.1       |          |
| 0716+714 | 6.8       | 6.4      |
| OJ287    | 10.4      |          |
| 1055+018 |           |          |
| 3C273    | 8.2       |          |
| 3C279    | 9.6       |          |
| NRAO530  |           |          |
| SgrA*    |           |          |
| 3C345    |           |          |
| 1633+382 |           |          |
| 1749+096 |           |          |
| 2013+370 |           |          |
| BL Lac   | 9.0       |          |
| 2145+067 |           |          |
| CTA102   |           |          |
| 3C454.3  |           | 7.3      |

# Schematic



The central engine which powers all active galaxies: SMBH+accretion disk + jet + broad-line and narrow line clouds

Broad-line clouds: high velocity dispersion, near SMBH

Narrow-line clouds: low velocity dispersion ("cold") far from SMBH

**Unified Scheme:** 

The AGN paradigm

depending on viewing angle: jet brightness and jet-to-counter jet ratio changes

polarisation properties vary

spectral lines (absorption/emission) become visible

depending on BH mass, spin and luminosity:

different AGN classes such as FRI/FRII RGs, QSOs, BLLACs

magnetic field, accretion rate and angular momentum distribution:

radio loud / radio quiet (jet/no-jet) ??

Astronomy 191 Space Astrophysics

### Detection of the counter-jet of Cygnus A at 43 and 86 GHz



beam: 140 x 56 μas 0.15 x 0.06 pc

### 43 GHz 2007.807 Global VLBI



gap between jet and counter jet at 43 GHz:  $\approx 0.5$  mas  $\sim 2200$  R<sub>s</sub> at 86 GHz:  $\leq 0.2$  mas  $\leq 880$  R<sub>s</sub>

### The spectral index distribution on sub-mas scales



### Intrinsic Jet-to-Counterjet Ratio determined from 3mm-VLBI



# cm- and mm- absorption line spectra of NGC 1052

2MASS, IR

VLBA, 2cm





broad absorption profiles at mmwavelenght ( $\Delta$  v= 300–400 km/s)

Liszt & Lucas 2004



The size of a synchrotron self-absorbed emission region

SSA:

$$\theta_{\min} \geq \sqrt{\frac{1.22 \cdot S}{\nu^2} \cdot \frac{1}{T_B^{\max}}}$$
  
for  $T_B^{\max} \leq 10^{12} \text{ K} \cdot \delta$   
 $\rightarrow \theta_{\min} \geq 10 - 20 \mu as \cdot \delta^{-0.5}$ 

accurate size measurements allow to test the relativistic jet model and the physical details of the (non-thermal) radiation mechanism (eg. equipartition conditions, jet speed, viewing angle, etc ...)

# Angular and Spatial Resolution of mm-VLBI

| λ      | ν       | θ                  | z=1            | <b>z=0.01</b> | d= 8 kpc             |
|--------|---------|--------------------|----------------|---------------|----------------------|
| 3 mm   | 86 GHz  | 45 <sub>µ</sub> as | 0.36 рс        | 9.1 mpc       | 1.75 <sub>µ</sub> рс |
| 2 mm   | 150 GHz | 26 <sub>µ</sub> as | 0.21 pc        | 5.3 mpc       | 1.01 <sub>µ</sub> рс |
| 1.3 mm | 230 GHz | $17 \mu as$        | <b>0.14 pc</b> | 3.4 mpc       | 0.66 <sub>µ</sub> pc |
| 0.87mm | 345 GHz | 11 <sub>µ</sub> as | 0.09 pc        | 2.2 mpc       | 0.43 μpc             |

linear size:

~10<sup>3</sup> R<sup>9</sup> 20-100 R<sup>9</sup> 1-5 R<sup>6</sup>

for nearby sources, these scales correspond to 1 - 100 Schwarzschild radii, depending on distance and black hole mass !

→ mm-VLBI can directly image (!) the vicinity of SMBHs (Event Horizon, BH-Shadow, GR-theory) !

 $\rightarrow$  best candidates: Sgr A\* (10 µas = 1 R<sub>s</sub><sup>6</sup>) and M 87 (Cen A is far south, M81 & NGC4258 are weak)

 $\rightarrow$  need sensitive mm-telescopes (i.e. ALMA) to image the emission around Black Holes in AGN

 $\rightarrow$  need a full global VLBI array for sensitivity and resolution .

# Angular Resolution



Millimetre VLBI provides the highest angular resolution in Astronomy !

# The Global Millimeter VLBI Array (GMVA)

# Imaging with ~40 $\mu$ as resolution at 86 GHz

**Baseline Sensitivity** 

in Europe:

<u>30 – 300 mJy</u>

in US:

<u>100 – 300 mJy</u>

transatlantic:

<u>50 – 300 mJy</u>

Array:

<u>1 – 3 mJy / hr</u>

(assume  $7\sigma$ , 100sec, 512 Mbps)

http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm

- Europe: Effelsberg (100m), Pico Veleta (30m), Plateau de Bure (35m), Onsala (20m), Metsähovi (14m), Yebes (40m), planned: GBT, LMT, ALMA
- USA: 8 x VLBA (25m)

Proposal deadlines: February 1<sup>st</sup>, August 1<sup>st</sup>



# M87 VLA 2cm

A

B

FIG. 3.-Gray scale image of the jet from feature A through C

helikal filaments

### Kelvin-Helmholtz Instabilities

core

Elliptical body mode and double peaked transverse jetprofiles





Hardee & Eilek 2011

### Non-ballistic (helical) motion in the jet of quasar 3C345

results from F. Schinzel, PhD Thesis 2011





Moving patterns in a stratified jet rotating around its z-axis

# The swinging jet of NRAO150: sub-mas scales

### 3 mm-VLBI images with the GMVA

2006



3 mm-VLBI shows jet rotation with an angular speed of ~10°/yr and an extrapolated rotation period of 20 – 30 yrs Agudo et al. 2007 (AA)



Size of jet base appears too small for magnetic sling-shot acceleration. Direct relation to BH more likely  $\rightarrow$  a GR-MHD Dynamo ?



VLBA 43 GHz

### A 3mm VLBI survey of 127 AGN:

$$T_{\rm b,s} = \frac{2\ln 2}{\pi k_{\rm B}} \frac{S_{\rm tot}\lambda^2}{d^2} (1+z)$$

# Brightness temperature decreasing with frequency ?



Brightness temperature increasing along jet; evidence for intrinsic acceleration ? mm-VLBI surveys of AGN can discriminate between fundamental models of jet formation





overwhelming evidence for :

- jet acceleration from sub-pc to pc distances
- core-sheath structure at jet base (hollow jet)
- rotation of jet base / whole jet around z-axis
- small gap between base of jet and counter-jet
- high brightness temperature within < few 10 Rs</li>

but:

more good quality images with high spatial resolution (< 0.1 pc) needed (multi-frequency, multi-epoch, preferably with polarization)

### Magnetically driven relativistic Jets



Accelerating forces: Magnetic driving is most efficient

ത/ത

Lorentz-factor and Poynting-to-mass flux ratio for inner and outer field lines

Vlahakis & Königl 2003, 2004; Vlahakis 2006

### Blandford – Payne mechanism:

centrifugal acceleration in magnetized accretion disk wind

# **BP versus BZ mechanism**

Blandford – Znajek mechanism:

electromagnetic extraction of rotational energy from Kerr BH



measure

### Geodetic Precession in curved space-time



central mass is not rotating: geodetic precession, de Sitter precession

central mass is rotating: frame dragging, Lense-Thirring effect

$$\Omega = \omega + \frac{\alpha^2}{\mathbf{R}^2} \frac{\lambda}{1 - \omega \lambda}$$



# Are GR-MHD effects near the BH the main jet driver? $\Omega = \omega + \frac{\alpha^2}{R^2} \frac{\lambda}{1 - \omega\lambda}$



matter and fields are forced to co-rotate with the horizon

torque due to misalignement of  $\vec{L}$  from accr. disk and Kerr BH

 $\rightarrow$  P =0.3 - 20 yrs appear possible

(e.g. Caproni et al., 2004)

| <u>known "pr</u><br>sources: | <u>ecessing'</u> |
|------------------------------|------------------|
| 3C84                         | Gal              |
| NRAO150                      | QSO              |
| 0716+714                     | BL               |
| 3C120                        | Gal              |
| 3C273                        | QSO              |
| 3C279                        | QSO              |
| 3 <b>C</b> 345               | QSO              |
| BLLac                        | BL               |



# 3C345: A Binary Black Hole?



The assumption of a supermassive binary Black Hole in 3C345 explains:

- 1. observed helical trajectories of the jet components
- 2. flux density changes of the jet components
- 3. optical variability
- 4. morphology and evolution of the jet

Combination of flux density evolution and kinematic data allow determination of mass and orbit of BBHs.



 $M_1 = 1 \cdot 10^9 M_{sol}, M_2 = 5 \cdot 10^8 M_{sol}$  $a_{maj} = 0.63 \text{pc} (0.13 \text{ mas}), e = 0.1$  $P_{orb} \approx 170 \text{ years}, P_{prec} \approx 2500 \text{ years}$ 

Parameters of BBH in 3C345



#### Lobanov & Roland 2002



combined data:

Krichbaum, Fuhrmann, Ungerechts, Wiesemeyer, Gurwell et al.

T. Krichbaum, et al. 2007

frequency [GHz]

## Variability Timescale for Keplerian Motion around a BH



د م

Event horizo

example: SgrA\*, M= 4 x 10<sup>6</sup> M<sub>o</sub>, <u>P=30 min</u> for a=0, <u>P=5 min</u> for a=0.9982 M87 , M= 3 x 10<sup>9</sup> M<sub>o</sub>, <u>P=16 days</u> for a=0, <u>P=60 hrs</u> for a=0.9982

Need to search for rapid and quasi-periodic flux density variations and do quasisimultaneous mm-VLBI monitoring to determine the mass and spin of the SMBH.

# Superluminal ejection during Gamma-ray outburst

### 1510-089 43 GHz VLBA

mm-VLBI relates gamma-ray production with variability in VLBI core. Need high angular resolution and dense time sampling !



Correspondence between Gamma-Ray Flares and Time of Ejections of Superluminal Knots

| Source     | au   | Knot | $T_{\circ}$   | $T_{\gamma}$ | Γ  | $\Delta 1$  | $\beta_{app}$  | $S_{\gamma}^{max}$                            |
|------------|------|------|---------------|--------------|----|-------------|----------------|-----------------------------------------------|
|            |      |      | RJD           | RJD          |    | days        | с              | $10^{-6}$ ph cm <sup>-2</sup> s <sup>-1</sup> |
| 0235 + 164 | 0.79 | K1   | $4728{\pm}30$ | $4730 \pm 4$ | -  | $-2\pm34$   | $56 \pm 10$    | $0.91 {\pm} 0.07$                             |
| 3C 273     | 0.21 | K2   | $4747 \pm 45$ | $4744 \pm 4$ | +  | $-3\pm 49$  | $8.3 \pm 1.4$  | $1.40 \pm 0.13$                               |
|            |      | K3   | $4901 \pm 33$ | $4947 \pm 4$ | -4 | $6\pm37$    | $8.9 \pm 0.7$  | $1.03 \pm 0.10$                               |
|            |      | K4   | $\sim 5029$   | $5100 \pm 4$ |    | $\sim$ -71  | ~23            | $5.13 \pm 0.27$                               |
| 3C 279     | 0.32 | K2   | $4779{\pm}24$ | $4800 \pm 4$ | -2 | $21\pm29$   | $14.5 \pm 2.0$ | $1.48 {\pm} 0.10$                             |
| 1510 - 089 | 0.56 | K1   | $4675\pm23$   | $4723 \pm 4$ | -4 | $18\pm27$   | $24.0\pm 2$    | $0.91 {\pm} 0.07$                             |
|            |      | K2   | $4959 \pm 4$  | $4962 \pm 4$ |    | $-3\pm 8$   | $21.6\pm0.6$   | $3.78 {\pm} 0.17$                             |
| 3C 345     | 0.28 | K1   | $4677 \pm 21$ | $4737 \pm 4$ | -6 | $50 \pm 25$ | $7.1 \pm 0.6$  | $0.15 \pm 0.07$                               |
|            |      | K2   | $4904 \pm 50$ | $4982 \pm 4$ | -7 | $'8 \pm 54$ | $10.2 \pm 2.2$ | $0.28 \pm 0.09$                               |

new jet components appear within < ~60 days



Jorstad et al. 2009, Marscher et al. 2010

# Optical Polarization angle swings during mm-optical-gamma-ray flare



1510-089



Marscher et al. 2010

Sketch: polarization angle swing due to motion of shock in a magnetized helical jet

3C279: similar behaviour

(Abdo et al. 2010 , Nat 463, 919)



### Main questions addressed by mm-/sub-mm VLBI

- What are the physical conditions in regions of strong gravitational field near SMBHs ?
- How are the powerfull jets created and launched ? Test of GR-MHD dynamo model.

in detail:

- for nearby sources image silhouette around BH, determine its mass, spin, polarization
- measure shape & morphology of jet at its origin
- determine properties of jet nozzle, size, orientation, opening angle & time variability
- measure linear and transverse jet profile (ridgeline, hollow jet, stratification)
- measure jet speed, acceleration, compare to max. possible Lorentz-factor of dynamo
- find reason for helical jet structure (geodetic precession, MRI or KH instabilities)
- measure brightness temperature profile, leptonic or hadronic jet composition
- study outburst /ejection relation (broad-band variability, gamma-ray/TeV production)
- polarization of the jet nozzle, topology of B-field, overcome Faraday rotation at mm- $\lambda$
- For all this one needs a high as possible observing frequency and a small as possible observing beam in combination with good (mJy) sensitivity.

— Global mm/submm-VLBI monitoring using the most sensitive mm-antennas









composition: tkrichbaum@mpifr











image: S. Doeleman

<u>Angular Resolution:</u> 25-30 μas @230 GHz 16-20 μa<u>s</u> @345 GHz



ALMA, 50 x 12m



(angular resolutions calculated for 230 GHz)

Imaging Black Holes and the Central Engine with mm-/sub-mm VLBI

(now called Event Horizon Telescope)

# Future 1mm-VLBI – Sensitivities $(7\sigma \text{ in }[mJy])$

|        | PdBure | CARMA | Hawaii | SMTO | APEX | ALMA |
|--------|--------|-------|--------|------|------|------|
| Pico   | 40     | 50    | 56     | 124  | 100  | 14   |
| PdBure |        | 40    | 45     | 100  | 81   | 12   |
| CARMA  |        |       | 56     | 124  | 100  | 15   |
| Hawaii |        |       |        | 139  | 113  | 17   |
| SMTO   |        |       |        |      | 254  | 39   |
| APEX   |        |       |        |      |      | 31   |

assume: 4 GHz (16 Gbit/s) bandwidth , 20 s integration time, 2 bit sampling

### expected $(7\sigma)$ detection limits:

- Pico-SMTO/APEX :  $\sim 110 \text{ mJy}$
- plus PdBure / CARMA  $: \geq 40 \text{ mJy}$
- plus ALMA  $: \geq 12 \text{ mJy}$



numbers will improve if phase corrections are used to prolongue coherence

# Phase coherence at 230 GHz in October 2010 PV - PdB (phased)



good VLBI-phasing efficiency of the 6 elements of the PdB interferometer old correlator supports only 1 GBit/s (16 MHz, MK5A), correlation with DiFX new correlator will allows phasing and processing of 32 MHz bands.

### Performance of a global 1mm VLBI array

Performance Global 1mm VLBI (4 Gbit/s, tint=20 sec, 7 sigma) array sensitivity (mJy/hr) best baseline threshold (mJy) flux [mJy/hr] / detection threshold [mJy] 100 10 3 stations 2012 0.1**'n** 2 8 6 type of array 10 stations in 2020 ?

With the participation of ALMA the baseline sensitivity will be lowered to 1-5 mJy (depending a bit on BW). With 10 VLBI stations 1.5 mJy / hr can be reached.

- 1. SMTO-CARMA-JCMT
- 2. SMTO-CARMA-Hawaii
- 3. + Apex
- 4. + Pico Veleta
- 5. + PdBure
- 6. + ALMA
- 7. +LMT+SPT+GL
- 8. +2x4GHz (32 Gb/s)

# Global VLBI at 1mm and shorter

- image SMBH in Sgr A\*
- image SMBH / central engine of M87
- BH jet connection on <~ 100  $R_s$  in nearby AGN (another 5-10 targets)
- jets on scales of 100-1000  $R_s$  (dozens of AGN)

- need time resolution (several epochs per year)
- need spectral information (complementary VLBI at 3mm, 7mm, ....)
- need monitoring of total flux densities and SED
- need ahead planning, roadmap, MoU
- need proposal and schedule coordination

# Near future planning for mm-/sub-mm VLBI

- VLBI fringe test with Pico APEX at 230 GHz at 4 Gbit/s in 2012.
   Mk5C and DBBC at Pico updated and tested in 2011.
- in 2012/13 use PdBI at 1 Gbit/s and DiFX. Buy Mk5C & DBBC

The combination of Pico-PdB-APEX plus rest of the world gives good sensitivity and uv-coverage. Baseline sensitivity of Pico-PdB-APEX ~ 0.1-0.2 Jy.

- global VLBI with both IRAM instruments, APEX, ASTE, HHT, SMA, CARMA, etc., (regular VLBI imaging of AGN, jets, etc. → global VLBI array)
- go to 345 GHz as soon as possible. For this, the next 2 logical steps are:

1. short baseline Pico-PdBI VLBI using 1 Gbit/s and old Mk5A

2. long baseline Pico/PdB(1)-APEX VLBI using 4 Gbit/s (Mk5C),  $7\sigma$  =0.4 Jy

- phasing of PdB (IRAM internal development ~ 4-5 yrs ?, participate in phased array processor development for ALMA)
- more sensitive global sub-mm VLBI with ALMA (> 2016/17, at this time APEX may run out of funding)

