Studying black holes and jet formation using global millimeter VLBI with ALMA

T.P.Krichbaum

(on behalf of the team)

Max-Planck-Institut für Radioastronomie Bonn, Germany

tkrichbaum@mpifr.de

people involved:

MPIfR: W. Alef, U. Bach, A. Bertarini, T. Krichbaum,

H. Rottmann, A. Roy, J. Wagner, J.A. Zensus, et al.

- APEX: R. Güsten, D. Muders, K. Menten, et al.
- IRAM: M. Bremer, S. Sanchez, P. Cox, et al.
- OSO: M. Lindqvist, I. Marti-Vidal, M. Pantaleev, R. Haas, H. Olofsson, et al.
- INAF: G. Tuccari et al.
- ESO: G. Wieching et al.

in collaboration with:

- Haystack Obs.: S. Doeleman, V. Fish, R. Capallo, M. Titus, et al.
- <u>SMTO:</u> R. Freund, L. Ziurys, P. Strittmatter, et al.
- <u>SMA:</u> J. Weintroub, K. Young, R. Blundell

FGAMMA: Fuhrmann et al.; Boston: Marscher et al., Würzburg: Kadler et al.

<u>3C454.3 – The brightest gamma-ray AGN in the sky</u>

Rapid broad band flux density variability of AGN

data: FGAMMA collaboration (Fuhrmann et al.)

spectral variability more pronounced and faster at mm-/submm λ (turnover $v_{max} > 100-200$ GHz) variability timescales of days to months lead to sizes of ~1-100 µas (or < 5-50 milli-pc)

→ need high resolution mm-VLBI imaging !

activity cylces repeat every few years complex spectral evolution time-lags vary between flares mm-variability: high $T_B > 10^{11...12}$ K , $\delta > 1$ peak frequency varies from flare to flare correlation with optical, X-ray, gamma-ray

GMVA Observations of 3C111 in Outburst

- Thesis Projects (R. Schulz, Grossberger) @ Würzburg Univ. (M. Kadler)
- In collaboration with MPIfR & BU (T. Krichbaum, A. Marscher)
- and Univ. of Valencia (E. Ros)

Lightcurve obtained by F-Gamma program, vertical lines indicate the three GMVA epochs

uv-coverage (1st epoch)

The Global Millimeter VLBI Array (GMVA)

Imaging with ~40 μ as resolution at 86 GHz

Baseline Sensitivity

in Europe:

<u>30 – 300 mJy</u>

in US:

<u>100 – 300 mJy</u>

transatlantic:

<u>50 – 300 mJy</u>

Array:

<u>1 – 3 mJy / hr</u>

(assume 7σ , 100sec, 512 Mbps)

http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm

- Europe: Effelsberg (100m), Pico Veleta (30m), Plateau de Bure (35m), Onsala (20m), Metsähovi (14m), Yebes (40m), planned: GBT (100m), Future: phased ALMA
- USA: 8 x VLBA (25m)

Proposal deadlines: February 1st, August 1st

Tracing an Outburst in 3C111

• Major Outburst \neq Single Blob

v= 1.6 c at r=0.5 mas
v= 2.9 c at r=1-1.5 mas
v~ 6 c at r>2 mas (Mojave)
→ acceleration ?

possible counter jet ?

- moving kinks or jet-rotation ?
- Bent Structure
 - non-ballistic motion
 - precession of jet-base?

Kinematics analysis ongoing

Schulz, Kadler et al. (2012)

The swinging jet of NRAO150: sub-mas scales

3 mm-VLBI images using the GMVA

2006

3 mm-VLBI shows jet rotation with an angular speed of ~10°/yr and an extrapolated rotation period of 20 – 30 yrs Agudo et al. 2007 (AA)

Non-ballistic (helical) motion in the jet of quasar 3C345

results from F. Schinzel, PhD Thesis 2011

Optical Polarization angle swings during mm-optical-gamma-ray flare

Sketch: polarization angle swing due to motion of oblique shock in a magnetized helical jet

3C279: similar behaviour (At

(Abdo et al. 2010 , Nat 463, 919)

<u>1510-089</u>

Marscher et al. 2010

Scientific Motivation:

What is the physical origin of jets ? How does the region around a super-massiv black hole look like ?

The micro-arcsecond scale resolution of global mm- and sub-mm VLBI is needed to answer fundamental questions in BH-physics and about jet launching (test GR and GRMHD)!

Helical jet rotation caused by magnetic kink instabilities ? (c) $t_A = 72$

Jet rotation/precession due to frame dragging or binary BH?

Magnetically driven jet launching?

The Black Hole: A GR-MHD dynamo ?

Relativistic aberration & asymmetric emission around a rotating BH ?

Angular and Spatial Resolution of mm-VLBI

λ	ν	θ	z=1	z=0.01	d= 8 kpc
3 mm	86 GHz	45 _µ as	0.36 рс	9.1 mpc	1.75 _µ рс
2 mm	150 GHz	26 _µ as	0.21 pc	5.3 mpc	1.01 _µ рс
1.3 mm	230 GHz	$17 \mu as$	0.14 pc	3.4 mpc	0.66 _µ pc
0.87mm	345 GHz	11 _µ as	0.09 pc	2.2 mpc	0.43 μpc

linear size:

∼10³ R ⁹ 20-100 R ⁹ 1-5 R ⁶

for nearby sources, these scales correspond to 1 - 100 Schwarzschild radii, depending on distance and black hole mass !

 \rightarrow mm-VLBI can directly <u>image (!)</u> the vicinity of SMBHs (Event Horizon, BH-Shadow, test GR) !

 \rightarrow best candidates: Sgr A* (10 µas = 1 R_s⁶) and M 87 (Cen A is far south, M81 & NGC4258 are weak)

 \rightarrow need sensitive mm-telescopes (i.e. ALMA) to image the emission around Black Holes in AGN

 \rightarrow need a full global (sub-)mm VLBI array for sensitivity and resolution .

mm-VLBI imaging of the jet of M87

counter-jet or self-absorbed jet base ?

Ly, Walker et al. 2004, & 2007

Global 3mm VLBI of M87 with the GMVA

Structural variability in M87 on < 50 μ as scales (< 8 R_s) in 1year

note:

at mm/sub-mm wavelength AGN generally become weaker and jets become partially resolved

 \rightarrow need good sensitivity (≤ 0.1 Jy) \rightarrow large bandwidth / collecting area

Peak: approx 0.7 Jy

Variability in the inner jet of M87 detected : $\geq 0.2 \text{ mas/yr} \leftrightarrow \approx 18000 \text{ km/s} (0.06c)$

(but: 3 - 6 c seen further downstream)

VLBA 43 GHz

Size of jet base may be too small for magnetic sling-shot acceleration. Evidence for direct coupling to BH spin ? → a GR-MHD Dynamo ?

Astrometric phasereferencing VLBI on M87:

 $D_{jetbase}$ = 14-23 R_s

distance between jet base and black hole.

The higher the observing frequency the closer one approaches the 'central engine' – the SMBH

Hada et al. 2011

Blandford – Payne mechanism:

centrifugal acceleration in magnetized accretion disk wind

BP versus BZ mechanism

Blandford – Znajek mechanism:

electromagnetic extraction of rotational energy from Kerr BH

measure

Jet Power and BH Spin

Narayan & McClintoc 2012: BH spin correlates with jet power (in 4 stellar BBHs with ballistic jets)

jet power increases with BH spin equilibrium spin ~0.93 in ADAF models (Benson & Babul 2009, Hawley & Krolik 2006)

BZ works!, spin energy from BH, $\eta > 100\%$ jet power maximized for large retrograde BH spins

(Garafalo 2009, McKinney+ 2012, Tchekhovskoy+ 2012)

→ use jets to study cosmological evolution of SMBHs (spin, radio-loud/quite)

A 3mm VLBI survey of 127 AGN:

$$T_{\rm b,s} = \frac{2\ln 2}{\pi k_{\rm B}} \frac{S_{\rm tot}\lambda^2}{d^2} (1+z)$$

Brightness temperature decreasing with increasing frequency ?

Brightness temperature increasing along jet; evidence for intrinsic acceleration ? mm-VLBI surveys of AGN can discriminate between fundamental models of jet formation

The VLBI Jet of 3C279

Fringe detection with APEX at 230 GHz (May 7, 2012)

First VLBI fringes with APEX at 230 GHz (May 7, 2012)

3C279 and MK5C, DBE & DBBC, 1.92 Gbit/s, 480 MHz bandwidth

APEX – SMTO (Arizona): SNR 12.7 D=7170 km

APEX – SMA (Hawaii): SNR 12.3 D=9450 km

credit: A. Roy and Apex team

Toward a global 1.3 mm-/sub mm VLBI array (EHT) Status May 2012 with APEX added

accuracy of size measurement determined by SNR of fringe visibility at a given uv-spacing:

at 1mm with APEX: SNR=13 \rightarrow 0.26 * beam ~ 7 µas at 1mm with ALMA: SNR=500 \rightarrow 0.04 * beam ~ 1 µas \leftarrow need this !

time variability of AGN jet visibilities at 15 GHz (Mojave AGN sample)

dramatic variations of compactness on ≤ 1 year timescale !

Preliminary results – further analysis pending

- 3C279 detected on 3 baselines covering 5400-7200 M $\lambda.$
- calibration still uncertain, but data suggest relatively low correlated flux of \sim (0.3 1.5) Jy (S_{tot} \sim 18 Jy)
- emission comes from an ultra-compact region of ~28 μas in size (0.3 pc,

 \sim 3000 R_s), embedded in emission of considerably larger extend

- this implies brightness temperatures $\geq 10^{10}$ K (consistent with lower freqs)
- possible decrease of T_B towards smaller r needs confirmation (calibration uncertainties still large)
- ratio long/short baseline flux is barely consistent with point source model, more complicated structure is likely (this also effects T_B estimate)
- need better uv-coverage and sensitivity

 need VLBI with ALMA at 7mm, 3mm, 1mm to image faint and partially resolved structures !!

Image Black Holes and the region of jet formation with sub-millimeter VLBI

- achieve 10-25 micro-arcsecond resolution at sub-mm wavelengths
- image Sgr A* and M87 with a few R_G resolution (<u>BH imaging and GR-effects</u>)
- study jet formation in nearby Radio-Galaxies (jet-disk connection, outburst ejection relations, etc.)
- AGN studies at mm-λ, study SMBHs at high redshifts (cosmological evolution of SMBHs)
- build a global sub-mm VLBI array: PV, PdBI SMTO, Hawai, Carma, LMT, SPT, APEX/ ALMA (Event Horizon Telescope).
- the large collectiong area of ALMA is needed to reach <u>milli-Jansky sensitivity</u>

