Selected Topics in Relativistic Jets Simulations

Petar Mimica

Department of Astronomy and Astrophysics

University of Valencia

erc

Outline

- Introduction
- Simulations of dynamics and <u>emission</u> from:
 - internal shocks in blazars (X-ray)
 - external shocks in GRB afterglows (optical)
 - parsec-scale jets (radio)
- Summary and more

Hydrodynamic simulation: an indispensable tool

- events taking place in jets extraordinarily dynamic and complex
- jet physics: interplay of processes on a large range of length and time scales
- (magneto)hydrodynamical viewpoint accurate enough
- jets modelled as fluids: relativistic generalisation of Euler equations appropriate
- most commonly used systems of equations:
 - relativistic hydrodynamics (RHD)
 - relativistic magnetohydrodynamics (RMHD)
 - general relativistic hydrodynamics (GRHD)
 - general relativistic magnetohydrodynamics (GRMHD)
 - resistive relativistic magnetohydrodynamics (RRMHD)
- advances in numerical techniques and supporting hardware and software make it possible to simultaneously perform *HD simulations *and* compute corresponding synthetic images, spectra and light curves

Petar Mimica

Simulations of Relativistic Jets

Example: RHD Equations

Simulating Jet Evolution

- equations solved after specifying initial and boundary conditions
- spacetime discretization: numerical solution computed at a finite number of spatial and temporal points Uⁿ_{i,j,k}=U(tⁿ,x¹_i,x²_j,x³_k)
- spatial grid: typically uniform or AMR (adaptive mesh refinement)
- numerical dissipation included to keep non-smooth flows under control (e.g, properly treat shock waves, contact discontinuities)
- special considerations of (G)RMHD: finite accuracy (truncation errors) means that codes need to include explicit enforcement of the constraint equation (divergence cleaning or constraint transport)

Petar Mimica

Simulations of Relativistic Jets

Jet Simulations on Different Scales

- AGN jets:
 - launching and collimation (subpc scales)
 - VLBI jets, superluminal components (pc scales)

Agudo *et al.* 2001 (AGN, pc-scale, recollimation)

Mimica *et al.* 2009

(AGN, pc-scale, radio)

Leismann et al. 2005

(AGN, magnetized jet)

jet-environment interaction (kilopc scales)

McKinney et al. 2014 (BZ, launching)

Perucho et al. 2010 (KH, stability)

Mizuno et al. 2014 (CD kink, stability)

Mignone *et al.* 2009 (AGN, magnetized jet)

Scheck *et al.* 2002

(AGN, long-term evolution)

Perucho et al. 2014 (AGN, jet-ICM interaction)

- GRB jets:
 - jet formation (<10⁸ cm)
 - interaction with(in) the progenitor $(10^8-10^{11} \text{ cm})$
 - interaction with the circumburst medium (>10¹⁴ cm)

Aloy et al. 2000 (GRB, fireball, launching)

Zhang & MacFadyen 2009

(GRB, afterglows)

Mimica et al. 2009

(GRB, magnetized afterglows)

Zhang *et al.* 2004 (GRB, interaction with progenitor)

Lazzati et al. 2009 (GRB, interaction with progenitor)

Vlasis et al. 2011 (GRB, radio afterglows)

Petar Mimica

Simulations of Relativistic Jets

Simulating Jet Emitted Radiation

- underlying jet fluid ("thermal plasma") not directly observable from Earth
- population of high-energy non-thermal particles in the jet responsible for observed emission

Algorithm Classification

	τ≪1	τ ≳1	
local	 X & γ-ray afterglows blazars emission 	 stationary radio emission 	
transport	 opt. & UV afterglows X-ray TDE jets 	radio jetslate-time radio afterglows	tistance from jet axis (cm) van Eerten <i>et al.</i> 2011

Simulating Jet Observed Radiation

radiation transfer equation:

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = j_{\nu} + \alpha_{\nu}I_{\nu}$$

$$s = c(t - T) + s_0$$

Petar Mimica

 for a fixed observer time T, need to process the whole spacetime evolution to compute a single virtual image

- tightly coupled, highly non-local problem
- <u>5D problem</u>:
- virtual detector image (x, y)
- observation time **T**
- observation frequency ${\bf v}$
- contributions along the line of sight s

for a fixed *T*, equation gives an isochrone (*s*, *t*) along each line of sight

Simulations of Relativistic Jets

Jet Simulations Building Blocks

Petar Mimica

Simulations of Relativistic Jets

Internal Shocks: Colliding Shell Hydrodynamics

- model: steady jet (background) with embedded density and velocity perturbations (shells)
- shells: initially cold, relativistic, possibly magnetised
- two shocks form upon contact
- **forward shock:** compresses and accelerates slower shell
- reverse shock: compresses and decelerates faster shell

Colliding shell models classification

	model type	advantage	disadvantage
	1- or 2-zone	 treatment of large number of shell collisions possible 	 very simple shell evolution and emission calculation
	multi-zone	 detailed treatment of radiation processes 	 simplified treatment of hydrodynamics
	simulations	 detailed hydrodynamic evolution and emission 	 computationally expensive, inefficient for parameter scans
Petar M	imica Simulai	ions of Relativistic Jets	Ierapetra, June 19th 2014

2D RHD Colliding Shell Simulations

- model: aligned cylindrical shells with same initial $\boldsymbol{\rho}$
- very little lateral expansion
- shells pre-heated prior to collision
- merged shell wider and hotter than the initial shells
- 2D simulations expensive, little or no lateral expansion => 1D simulations probably good enough

Petar Mimica

2D RHD Colliding Shell Simulations

- model: aligned cylindrical shells with same initial $\boldsymbol{\rho}$
- very little lateral expansion
- shells pre-heated prior to collision
- merged shell wider and hotter than the initial shells
- 2D simulations expensive, little or no lateral expansion => 1D simulations probably good enough

Petar Mimica

2D RHD Colliding Shell Simulations

- model: aligned cylindrical shells with same initial $\boldsymbol{\rho}$
- very little lateral expansion
- shells pre-heated prior to collision
- merged shell wider and hotter than the initial shells
- 2D simulations expensive, little or no lateral expansion => 1D simulations probably good enough

- electrons accelerated at FS and RS
- electrons advected with the fluid
- synchrotron cooling
- on-axis synchrotron emission
- back-reaction (thermal energy subtracted from shocks)
- expensive simulations: any change of microphysical parameters requires new run

Petar Mimica

1D RHD & RMHD Colliding Shell Simulations

Mimica *et al.* 2007 (magnetised shells, *MRGENESIS code*)

Petar Mimica

Simulations of Relativistic Jets

Overview of Multi-zone Semi-Analytic Models

- characteristics: approximate hydrodynamics, detailed calculation of emission
- Sokolov et al. (2004): synchrotron + SSC, includes synchrotron cooling
- <u>Böttcher</u> & Dermer (2010): synchrotron + EC + SSC emission includes synchrotron + EC cooling, large parameter space scan, focus on inter-band lags
- <u>Chen</u> et al. (2011): Fokker-Planck (electrons) + Monte Carlo (photons)
- Joshi & <u>Böttcher</u> (2011): inhomogeneous particle and photon distributions (slicing of the emitting regions), includes SSC cooling
- <u>Zacharias</u> & Schlickeiser (2012, 2013): nonlinear SSC cooling, strong influence on variability timescales
- Mimica & Aloy (2012): exact solution of RP, synchrotron + EC + SSC including synchrotron + EC cooling, scans magnetisation parameter space
- Rueda-Becerril et al. (2014): variation of bulk and relative Γ and θ_{obs}
- Joshi et al. (2014): includes accretion disk, BLR and DT as sources of seed photons for EC, full Klein-Nishina treatment
- Marscher (2014): turbulent magnetized plasma, syn. + IC cooling, polarization
- Jamil & <u>Böttcher</u> (2012), <u>Chen</u> et al. (2014), Zhang et al. (2014): ordered magnetic fields (angle dependent synchrotron emissivity), polarisation

(more details in talks by M. Böttcher, X. Chen, M. Zacharias, J. Rueda-Becerril)

Petar Mimica

GRB Ejecta-Medium Interaction

Petar Mimica

Magnetized vs. Hydrodynamic Ejecta

What should be the shell magnetization at the onset of the afterglow?

•impulsive acceleration of very magnetised shell has been studied in detail (e.g., Granot, Komissarov & Spitkovsky 2011; Lyutikov 2011; Levinson 2011; Granot 2012; Komissarov 2012)

- •a $\sigma \gg 1$ shell accelerates until $\sigma \approx 1$
- •longitudinal expansion converts Poynting flux into kinetic energy
- •jet might be Poynting dominated beyond prompt emission zone (e.g., Komissarov 2012)

Petar Mimica

Simulations of Relativistic Jets

Why Are Early Afterglow Simulations Important?

- (possible) RS detections in the *Swift* era (Gomboc et al. 2009) 041219A, 050525A, 050904, 060111B, 060117, 061126, 080319B • no reverse shock optical component detected in most early afterglows (Roming et al. 2006, Gomboc et al. 2009)
- strong magnetic fields affect shock conditions RS forms only if: $\sigma < 0.6 n_0^{1/2} \Delta_{12}^{3/2} \gamma_{2.5}^4 E_{53}^{-1/2}$
- no RS -> no early optical flash

Petar Mimica

Simulations of Relativistic Jets

1.9 x10¹⁷cm

720

negligible magnetic field

magnetized afterglow

Quantities displayed: distance from center density contrast comoving magnetic field Lorentz factor

RMHD Early Afterglow Simulations Difficulties

Mimica, Giannios & Aloy 2009 (deceleration of magnetised shells)

numerical transient

relaxation time

logτ

28

 $N_{\rm iter} \ge 10^3$

• early afterglow simulations require prohibitively high resolution

0

Ó

ΞĘ-0.5

0

0

Ierapetra, June 19th 2014

resolution $\propto \Gamma_0 / \tau_{relaxation}$

RMHD Early Afterglow Simulations Difficulties

Mimica, Giannios & Aloy 2009 (deceleration of magnetised shells)

numerical transient

relaxation time

- early afterglow simulations require prohibitively high resolution
- idea: run at lower Γ, but rescale shell and ext. medium properties, keep ξ constant
- numerical tests confirm: once performed, a single simulation can be rescaled to arbitrary Γ!
- (other scaling relations possible: van Eerten & MacFadyen 2012; Granot 2012)

 Γ_0

20

resolution $\propto \Gamma_0 / \tau_{\text{relaxation}}$

Petar Mimica

P

log

28

27

-5

N_{iter} x 10³

Simulations of Relativistic Jets

Ó

-3

0

0.5

10

C

Ö

-4 log ∆x

Early Afterglow Optical Emission

- generic simulations: moderate σ increases optical flash luminosity, $\sigma > 0.1$ suppresses RS & optical flash
- modeling of two GRBs with a strong optical flash yields consistent parameters:
 - GRB 990123: $\Gamma_0 = 640, \sigma_0 = 0.01$
 - GRB 090102: $\Gamma_0 = 940, \sigma_0 = 0.1$
- Harrison & Kobayashi (2013): σ₉₉₀₁₂₃/σ₀₉₀₁₀₂ ≈30
- difference between two results probably due to pure RHD treatment in H&K (2013)

Petar Mimica

Emission from Parsec-scale Jets

- intensive VLBI monitoring of innermost regions of relativistic jets reveals rich emission structure and variability, e.g.:
 - **stationary features:** standing knots of increased radio emission associated with the internal oblique shocks
 - **superluminal components:** radio emitting plasma moving at apparent superluminal velocities, associated with injection of material into the jet
 - **trailing components:** slow or quasi-stationary features trailing superluminal components
- observed emission influenced by a number of effects (time delays, Doppler boost, light abberation, opacity, Faraday rotation, ...) and not a direct map of jet physical state
- comparisons with relativistic (magneto)hydrodynamics and emission simulations needed to understand the inner jet dynamics

Petar Mimica

Simulations of Relativistic Jets

Numerical Hydrodynamic Models

Gomez *et al.* 1997 (perturbation of steady jets, emission)

Komissarov & Falle 1997 (perturbation of steady jets, emission)

Petar Mimica

Simulations of Relativistic Jets

Numerical Hydrodynamic Models

Petar Mimica

Simulations of Relativistic Jets

Simulated Radio Emission from Stationary Jet

Petar Mimica

Simulations of Relativistic Jets

Perturbation of Stationary Jet

- component: velocity perturbation at jet nozzle
- component interacts with recollimation shocks
- simulation: MRGENESIS, 2D cylindrical, 1600 x 80 zones, 5 x 10⁴ snapshots

Perturbation of Stationary Jet

- component: velocity perturbation at jet nozzle
- component interacts with recollimation shocks
- simulation: MRGENESIS, 2D cylindrical, 1600 x 80 zones, 5 x 10⁴ snapshots

Time-Dependent Radio Emission

simulation: SPEV, 128 frames, 270 x 18 pixels, 3 frequencies, 100 Kh / model 0.5 Tb hydro data, 2x10⁵ Lagrangian particles, 2x10⁶ line-of-sight segments

Petar Mimica

Simulations of Relativistic Jets

Time-Dependent Radio Emission

simulation: SPEV, 128 frames, 270 x 18 pixels, 3 frequencies, 100 Kh / model 0.5 Tb hydro data, 2x10⁵ Lagrangian particles, 2x10⁶ line-of-sight segments

Petar Mimica

Simulations of Relativistic Jets

Simulated Superluminal and Trailing Components

Petar Mimica

Simulations of Relativistic Jets

Fromm *et al.* 2013 ("catching the flare in CTA 102")

Fromm *et al.* 2014 (in preparation)

Fromm *et al.* 2013 ("catching the flare in CTA 102")

Fromm *et al.* 2014 (in preparation)

10

Fromm *et al.* 2014 (in preparation)

Summary, to do list, wish list, distant goals

- relativistic jet simulations: ability to study many jet aspects
- consistent emission calculations: expensive, but enable direct simulationobservation comparisons
- modelling of individual sources starts to become feasible
- **to-do list** (some tasks partially complete):
 - improve shock acceleration models: input from PIC simulations (energy distr.)
 - add non-ideal effects: resistivity (RRMHD), reconnection
 - improve radiation transfer: polarisation, in full GR, more processes
 - improve methods: realistic EOS, higher-order schemes

• wish list:

- improved parallelism (easier switching shared <->distributed memory)
- improved I/O performance (improve parallel read/write performance)
- multidimensional shock-front reconstruction (identification of particle acceleration sites)
- hydro + emission code comparisons

• distant goals:

- 3D GRRMHD + 3D non-thermal particle transport
- time dependent radiative transfer in GR
- angle dependent synchrotron + SSC (nonlinear cooling) + EC (realistic seed photons) + pair production + γ -hadron interaction + EM-cascades

Petar Mimica