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Pulsar Timing Arrays

* Introduction to pulsar timing arrays

* The major worldwide pulsar timing array efforts

« Pulsar timing array projects

« Using pulsar timing arrays to detect gravitational waves
« Current status and future prospects

 What will the field look like in 5, 10, 20 years?
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Pulsar Timing Array

A network of pulsars that can be used to measure various effects that produce
correlations in the arrival times of pulses from the members of the array.

First proposed by Foster and Backer (1990).
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Millisecond Pulsars (MSPs)

Out of over 2300 known pulsars, there are
now over 217 MSPs (P <20 ms) in our
Galaxy, out of roughly 30,000 detectable.
Galactic MSPs are local (d ~ 1 kly) and
roughly isotropically distributed.
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They are incredibly stable
rotators, making them excellent
fundamental physics laboratories.
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What data does a PTA produce? Times-of-arrival!
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Lorimer & Kramer, 2005, “Handbook of Pulsar Astronomy”

On-line folding: adding many pulses together to get stable mean pulse profile

De-dispersion: correcting for frequency-dependent interstellar delays
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Obtaining a Timing Model and Residuals

TOASSB - TOAtopo + teorr — AD/fz -+ AR@ =+ AS@ =+ AE@

Timing Residuals = Model — Measured TOAs

We fit for:

- period

- period derivative

- position

- dispersion measure
- variations in DM

- proper motion

- parallax

- binary parameters

- relativistic binary
parameters
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Typical Residuals for a Millisecond Pulsar

J1713+0747 P=4.57ms
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Demorest et al. 2013, ApJ, 762, 94

Orus = Weighted root-mean-square residual = 70 ns (6 x 10° P)

after fitting for spin, astrometric, Keplerian, and post-Keplerian parameters and
time-variable dispersion measure changes.

Arrival times measured to tens of nanoseconds and periods to 1 part in 107°,

Today at 9:10 am, the spin period of this pulsar is
|erapetra’ Crete 4.5701365286377(3) mI”ISGCOHdS. 16 June 2014



Pulsar Timing Array projects

- a pulsar-based timescale -> monopole effect
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Pulsar Timing Array projects

- measurement of solar system masses -> dipole effect

ot

Timing array Jupiter measurment

iming array Saturm Measurément --we--
Galiles Jugiter maasirament ====-
Cassini Salurm measorament o

- All puisars

PSR J1809-3744

PSR J1B570343

e PSR J1744-1134

Pioneer and Voyage

Uncartanty n mass of planat (M)

Galeo

-15 -10 -5 0 S 10 15 20 25 3 0'®

Mass difference fram DE&21 (x107 0 MY Q 5 10 15 20 25
o

Years of observaton

Champion et al. 2010, ApJ, 720, L201

Pulsar timing could provide the most accurate mass measurements for
some planets!
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Pulsar Timing Array projects

- interplanetary space navigation -> dipole effect
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Through X-ray timing measurements of four MSPs observed from an
Earth-Mars spacecraft, can determine positions to 20 km and velocities
to 0.1 ms.
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Pulsar Timing Array projects

- gravitational wave detection -> quadrupolar effect

h+ hx o® o

h = strain = AL/L=0.5

frequency = 1/(2 seconds) = 0.5 Hz
speed =c

wavelength =6 x 108 m
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Gravitational Waves

- systems with varying quadrupolar moments will emit GWs

h+ hX e® o

h = strain = AL/L=0.5

frequency = 1/(2 seconds) = 0.5 Hz
speed =c

wavelength =6 x 108 m
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Why study them?

Continuous

Test GR and study things not
able to be studied
electromagnetically!

Stochastic

Dark Energy
Accelerated Expansion
Afterglow Light \
Pattern  Dark Ages Development of
Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

lerapetra, Crete 16 June 2014



Worldwide direct detection efforts

LIGO eLISA

f ~1/ms (100 — 1000 Hz) f ~ 1/(mins-hrs) (102— 10-3H2)
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Worldwide direct detection efforts

Pulsar Timing Array

f ~ 1/(weeks-years) (10— 10°Hz)

lerapetra, Crete 16 June 2014



10°

10—10

10—15

10—2Y

10~2°

A

The big picture of gravitational-wave astronomy

. Cosmic Microwave
Background

*Primordial gravitational

waves

i Pulsar Timing
$v Arrays

Space-based
Interferometers

* Supermassive black
hole binaries

*Primordial gravitational
waves

o Stellar mass
compact binaries

e Supermassive black
hole mergers

Ground-based
Interferometers

*Neutron star mergers
*Black hole mergers

10—16

107° 10~
Frequency |[Hz]

102

lerapetra, Crete

16 June 2014



Detecting a stochastic background with a PTA

Expected correlation of residuals for pairs of pulsars
versus angular separation on sky. Pulsar terms
uncorrelated. Earth terms correlated.
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Also continuous wave and burst source detection
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50 billion solar mass binary with period 2
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Finn & Lommen, ApJ, 2000, 718 1400

Parabolic encounter of two billion solar
mass black holes at 20 Mpc.
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Supermassive Binary Black Holes

For SMBH binaries, h ~ 23 and lifetimes 1T ~ f8/3,
Sum over many systems results in a = -2/3.
Amplitudes depend strongly on SMBH masses
and galaxy merger rate as a function of redshift,
with A a N12M (Sesana et al. 2008, Sesana 2012).

f
yr—1

o) =

Other possible
sources:

cosmic strings

a=-7/6
(Damour & Vilenkin 2005;
Seimens 2007 )

early universe
inflation

a= -0.1
(Grishchuk 2005)
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Pulsar Timing Array Efforts

This project involves regular, high-precision observations of as
many MSPs as possible at a frequent cadence and at multiple
observing frequencies, accompanied by ample development work
to correct TOAs for subtle propagation and intrinsic effects and to
detect weak signals in noisy data and interpret those Iin
astrophysical contexts.

This is a LOT of work....and requires international collaboration!
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The International Pulsar Timing Array
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IPTA2013
International Pulsar Timing Array:

Student Workshop & Science Conference
June 17- 28,2013

Sheraton Krabi Beach Resort, Krabi, Thailand

2

Formed in 2008 and now has roug 100 bers from
30 institutions in 8 countries.
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A consortium of consortia

. Arecibo |

%

CSIRO Parkes
Observatory

Jodrell Bank:+
Observatory ==

Currently timing 106 MSPs (70 independent MSPs) at six radio frequencies at nine
telescopes. There are roughly 50,000 TOAs spanning 10 years in the current release.
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Most recent limits are beginning to rule out

SMBH formation and evolution models
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When we will make a detection and
how can we get there faster?

3/13
\/E / T1/2

Orms

SN R < Ny,

N,sr = number of pulsars in the array

. See Siemens et al.
Cc = observation cadence arXiv:1305.3196.

O, = average residual RMS

T = total time span of data
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Improvement 1: Time

PATIENCE

Is A Virtue

\o/ MotivatedPhotos.com
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Improvement 2: Cadence
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Improvement 3: More precise TOA measurements
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We want bright pulsars with narrow pulses observed with sensitive
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Improvement 3: More precise TOA measurements
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We want bright pulsars with narrow pulses observed with sensitive
receivers with large telescopes over large bandwidths and with
long integration times.

== GMRT
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We are using the most
sensitive radio telescopes
in the world and are
steadily increasing our _ L &
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Improvement 3:

Super-wideband
receivers would be
optimal for
dispersion
correction.

Challenge is getting
low system
temperature and
accounting for
pulse profile
evolution.
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Improvement 4: More MSPs

See http://astro.phys.wvu.edu/GalacticMSPs
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Radio searches (aided by Fermi gamma-ray identifications) have more
than doubled the Galactic MSP population since 2010. Ongoing
searches with the world’s largest telescopes should reveal an additional

100 over the next several years.
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Improvement 4: More MSPs

Many bright and nearby MSPs remain to be found, meaning
dramatic increases in our sensitivity are possible.

See http://astro.phys.wvu.edu/GalacticMSPs
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When will we detect GWs?

Stochastic background
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Very likely to make a detection in the next 10 years and possibly in the next 4 years!

It is also possible that a continuous wave source will be the first detection, especially if a
follow-up to an electromagnetically identified candidate!
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The Future

(i.e. bold and off-the-cuff but not completely unfounded predictions)

- Present — 2015: Building our Observatory
20 MSPs @ <200 ns, 5 @ <50 ns
- Intensive pulsar searching, investigations of timing noise, and
development of timing and detection algorithms.
- 2015 — 2025: The Era of Detection with FAST and SKA Pathfinders
100 MSPs @ <200 ns, 10 @ <50 ns,2 @ <10 ns
- Stochastic background and several single sources detected.
Amplitude of GWB measured, with some implications for SMBH
binary population. Orbital parameters and burst amplitudes for
iIndividual sources estimated.
- 2025 — 2035: The Era of GW Astrophysics with the SKA
200 MSPs @ <100 ns, 50 @ <50 ns, 10 @ <10 ns
- Spectral slope of stochastic background determined,
allowing multiple contributions to be distinguished, and hundreds
of single continuous and burst sources identified, with
localization allowing electromagnetic follow-ups.
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credit: Michael Kramer
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