A Galactic Origin for the Fast Radio Burst FRB010621

Greg Madsen (IoA, Cambridge) K. Bannister (CSIRO)

Motivation

- FRBs: bright, non-repeating, highly dispersed, non-scatter-broadened* radio pulses
- distances uncertain to within a factor of $\approx 10^8$
- labyrinth of explanations
 - Galactic: unusual neutron stars, annihilating mini-black holes, flare stars, ...
 - Extragalactic: annihilating black holes, neutron star mergers, stellar/SNR collision, magnetar bursts, GRBs, "blitzars", cosmic strings, ...
- burst of publications
 - \approx 70 papers on ADS since 2012 (\approx 30 in 2014)
- race is on for $N_{detections} > N_{theories}$
- critically examine distance constraints for an FRB near Galactic plane

FRB 010621

- discovered in one 14' beam at Parkes
- RFI, 'perytons' ruled out
- low Galactic latitude: (25.43°, -4.00°)
- peak flux density: 360 510 mJy
- scatter broadening < 3 ms
- dispersion measure: $\int n_e(l)dl = 746 \pm 1 \text{ cm}^{-3} \text{ pc}$
- DM from NE2001 model: 533 cm⁻³ pc
 - 8 pulsars within 2° of FRB; all DM < 390 cm⁻³ pc
- if excess DM extragalactic, $D \approx 500h^{-1}$ Mpc
- can DM be fully attributed to electrons in Galaxy?

"Scutum Star Cloud"

Optical Window into Inner Galaxy

H α Spectra

$I_{H\alpha}[R]$	
	>100.0
-	15.8
_	8.6

6.0

4.5

3.3

1.1

 \bullet

• *Independent* measure of electron content along line of sight to FRB

WHAM: All-sky,

velocity-resolved optical

emission line survey of

diffuse ionised gas

- Hα emission seen out to high radial velocities; inferred D_☉ ~ 7 kpc
 - Line ratio $H\beta/H\alpha$ quantifies attenuation by dust: $A_V \sim 3$ mag

Emission Measure

- average spectrum over 1° circular beam
- 85% chance FRB010621 in WHAM beam toward (25.08°, -4.25°)
- v_{LSR} related to kinematic distance
- $I_{H\beta}/I_{H\alpha}$ implies $\tau_{H\alpha} \approx 2$
- EM related simply to $I_{H\alpha}$

$$EM \equiv \int_0^\infty n_e(l)^2 dl = 2.75 T_4^{0.9} I_{H\alpha}$$

• extinction-corrected EM:

276 ± 24 cm⁻⁶ pc [foreground dust screen; e^{τ}] 86 ± 7 cm⁻⁶ pc [dust well mixed; $\tau / (1-e^{\tau})$]

Model for EM & DM

- assume e^- reside in clouds with mean density n_0
- clouds occupy a fraction of line-of-sight distance f (0 < f < 1)
- heliocentric distance to FRB: D_p
- heliocentric distance over which e^- contribute to $I_{H\alpha}$: $D_{H\alpha}$

 $DM = n_0 f D_p \qquad EM = n_0^2 f D_{H\alpha}$

$$D_{\rm p} = \frac{\rm DM}{\sqrt{\rm EM}} \frac{\sqrt{D_{\rm H\alpha}}}{\sqrt{f}} = 13.6 \frac{\sqrt{D_{\rm H\alpha}^{10}}}{\sqrt{f_{0.1}}} \rm kpc \qquad DM = 746 \ \rm cm^{-3} \ pc \\ EM = 276 \ \rm cm^{-6} \ pc \\ D_{\rm H\alpha}^{10} = D_{\rm H\alpha} \ / \ 10 \ \rm kpc \\ f_{0.1} = f \ / \ 0.1$$

- 8 kpc < $D_{H\alpha}$ < 24 kpc (from H α spectra, MW geometry)
- 0.03 < f < 0.3 (from DM/EM toward pulsars of known distance)

Estimating D_p

• assume uniform prior distribution for f and $D_{\text{H}\alpha}$

• select value for EM (foreground screen/wellmixed)

• create Monte Carlo realizations using priors

• calculate posterior probability distribution for $D_{\rm p}$

Estimating D_p

- probability D_p < 24 kpc foreground: 90%
 'alternating': 68%
 well-mixed: 45%
- if foreground screen, most likely distance: $D_p = 14 \pm 6 \text{ kpc}$
- predicted scatter
 broadening at 20 kpc is
 ≈ 2 ms (< 3 ms ✓)
 Cordes & Rickett 1998
- (for all models, $D_{\rm p} < 50$ kpc with probability > 95%)

Caveats

- dust correction
 - $\tau_{H\alpha}$ increases sharply at 3-4 kpc
 - \rightarrow foreground model more likely
- assumptions for model of ISM
 - f, n_0 constant with l (*z*-height)
 - no HII regions along line of sight
- \rightarrow difficult to estimate precise distance $D_{\rm p}$

Caveats

- dust correction
 - $\tau_{H\alpha}$ increases sharply at 3-4 kpc
 - \rightarrow foreground model more likely
- assumptions for model of ISM
 - f, n_0 constant with l (*z*-height)
 - no HII regions along line of sight
- \rightarrow difficult to estimate precise distance $D_{\rm p}$
- \rightarrow easier to place upper limit on $D_{\rm p}$

Arecibo FRB 121102

- discovered in one 3.5' beam at Arecibo
- dispersion measure: $557 \pm 3 \text{ cm}^{-3} \text{ pc}$
- DM from NE2001 model: 188 cm⁻³ pc
- in Galactic plane toward anti-centre: (174.95°, -0.22°)
 → no velocity-distance relation

→ accurate extinction-corrected EM challenging

Summary

- at least one member of the FRB 'class' of objects is Galactic
 - 90% probability that $D_{\odot} < 24$ kpc
 - read more at arXiv:1401.0268; MNRAS
- high Galactic latitude members of FRB class are likely to be extragalactic
 - hard to say if low-b Arecibo FRB is Galactic
- serious consideration should be given to Galactic origin ideas
 - pulsar with unusual pulse-amplitude distribution?
 - annihilating mini (cometary-mass) black hole?
 - coronal emission from flare stars?
 - ?
- need more detections (2 out of 7 14 in Galactic plane)
- stay tuned to afternoon post-coffee talks today!

e.g., Keane et al. 2012; Loeb et al. 2014; Luan & Goldreich 2014; etc.