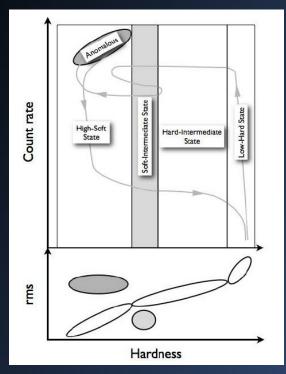

A Catalogue of Galactic BHs in X-ray binaries

Jesús M. Corral-Santana (PUC,IAC,ULL), Jorge Casares & I. G. Martínez-Pais (IAC,ULL), F. E. Bauer (PUC)



June 2014

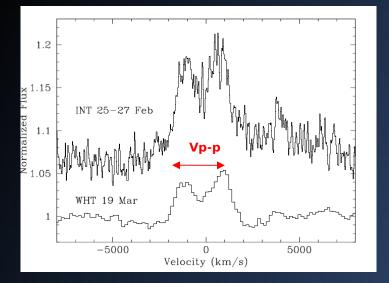
Introduction

BHs are mainly found in X-ray transients – a type of LMXBs with sporadic outburst episodes and long guiescence states

Despite our efforts, they have been detected only in outbursts in X-rays

BH candidates follow a behaviour in X-rays transiting between states in the outburst.

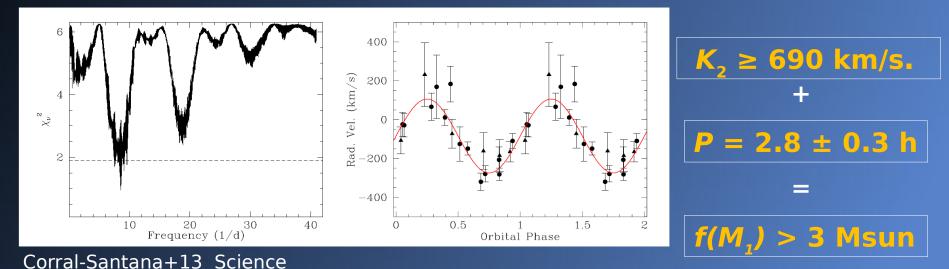
In quiescence, we can perform dynamical studies if the star is detected:

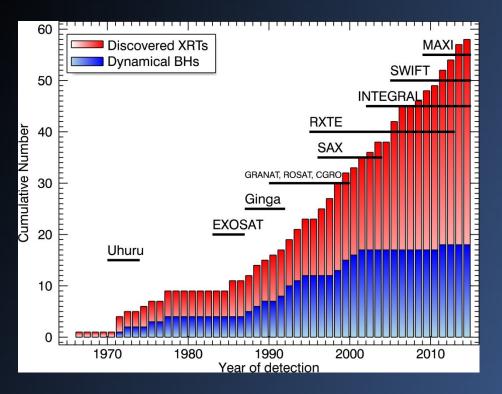

 P_{ORB}, K_2 $f(M_1), q, i \rightarrow M_1$

Dynamically confirmed BHs

At least: $f(M_1) > 3 M_{sun}$

Belloni10. See also Belloni+11


Swift J1357.2-0933: a VFXT?


Extremely broad FWHM H α : **3300** km/s. XTE J1118+480: *FWHM* ~ 2400 km/s, M_1 =8Msun, *P*=4h, *i*=68° Larger disc vel. prompt for: $M_1 \uparrow$, $P \downarrow$, *i* \uparrow

 $(0.5*Vp-p)/K_2 \cong 1.1 - 1.25$ (Orosz+94,95)

Measured: $Vp-p= 1790 \pm 67$ km/s

Black Hole Transients (BHTs)

BHTs detected since 1966

Rate of discoveries increased with improvement of X-ray satellites ~1.7 yr⁻¹ (since 80's)

In 48 years of X-ray astronomy:

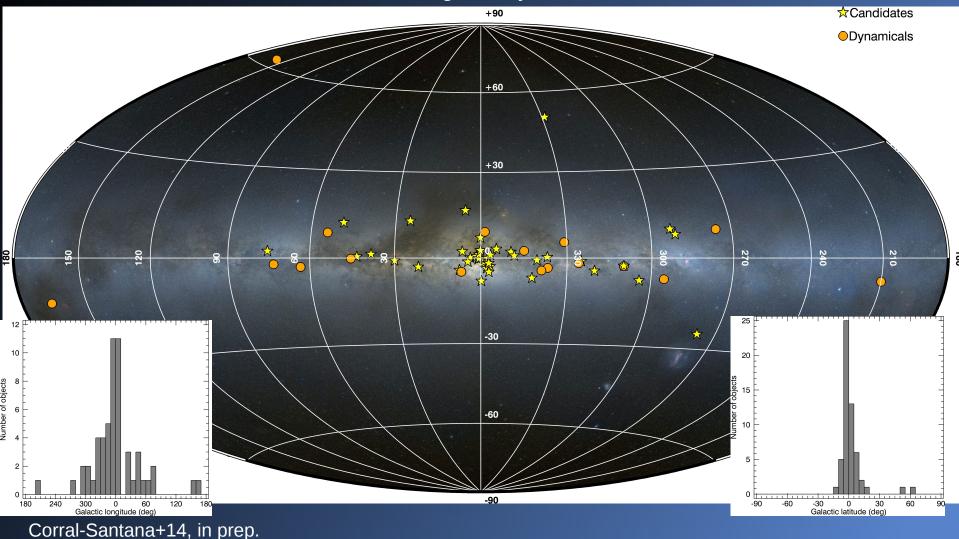
- 58 BH <u>candidates</u> so far (May2014)
- Only 17 dynamically confirmed (~30% of all BHTs) + SwiftJ1357.2-0933

Main problem is the faintness of the stars in quiescence

The catalogue

Aim:

- Collect all the information available and spread in hundredths of papers and IAUCs/ATels to create a catalogue of BHTs.
- Create a useful and updated reference book
- Analyse all the properties, make statistics and derive some conclusions based on the current sample.

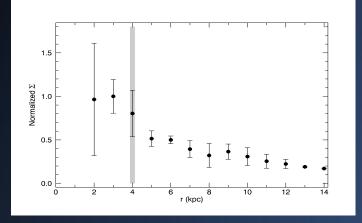

The on-line version:

Main characteristics + dedicated page on each target with extended information: magnitudes, dynamical parameters, references, links, finding charts, etc...

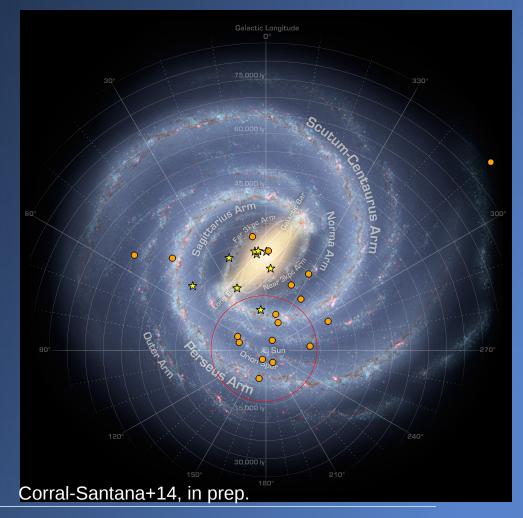
www.astro.puc.cl/~jcorral/BHTcat

Distribution in the Galaxy

Most of XRTs lie in the Plane and bulge. Only a few are in the halo.



Radial distribution


~55% of BHTs with known or estimated distances are within 4.5 kpc

Therefore, IS extinction is a severe limitation to dynamical confirmation.

The sample is complete up to **4kpc**, i.e. it's a good representation of dormant population

From analysis of vertical distribution (z), we can estimate the number of BHTs in the Galaxy (Duerbeck83)

Number of BHTs in the Galaxy

There are 10 objects with r<4kpc discovered since the rate of discoveries became constant (~1988)

If we assume that their vertical distribution follows the same function than the stellar one:

$$\rho^*(z) = \rho_0^* \exp\left(\frac{-|z|}{z_0}\right) (\text{kpc}^{-3} \text{ yr}^{-1})$$

Dynamical BHs 50 RXTE **Cumulative Number** 40 GRANAT BOS 30 EXOS. 20 Uhuru 10 2000 1970 1980 1990 2010 Year of detection

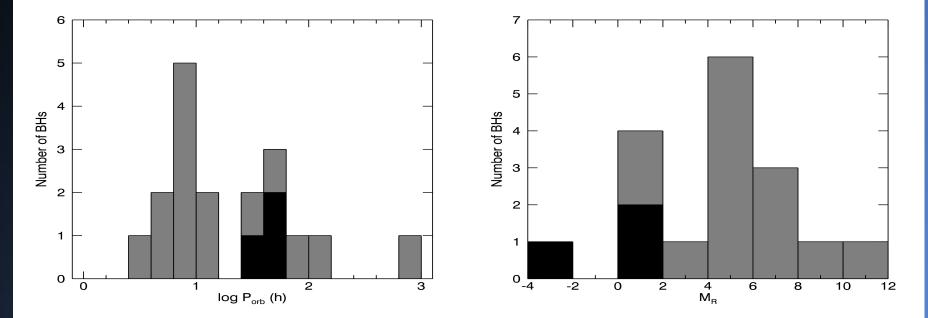
And a lot of assumptions:

- The mean outburst recurrence period is 100 yr (White&van Paradijs96)
- The solar vertical distribution can be extrapolated to other parts of the Galaxy (which is not true! since ~30% of the luminosity mass is in the bulge)
- There is no radial dependence

The derived lower limit of BHTs in the Galaxy is -1000

Consistent with previous determinations (Tanaka92, White&van Paradijs96 and Romani98) but lower than the 10⁴ predicted using population-synthesis models (Kiel&Hurley06 or Yungelson+06)

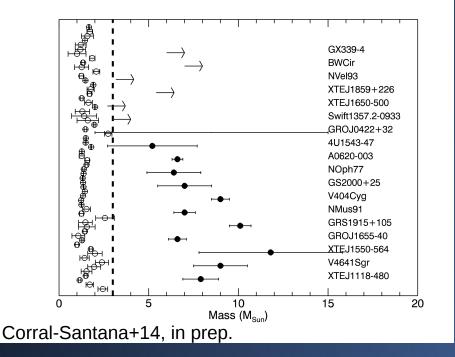
Dynamical parameters


$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAME	Spectral	Porb	K_2	$f(M_1)$	M_1	q	i	$v_{rot} \sin i$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		type	(h)	(km/s)	(M _☉)	(M_{\odot})	<u>^</u>	(°)	(km/s)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Swift J1357.2–0933 [†]	M4-M6	2.8 ± 0.3	> 690	≥ 3.0		≤ 0.06	~ 90	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	XTE J1650-500	K4V	7.69 ± 0.02	435 ± 30	2.7 ± 0.6	≤ 7.3	> 0.1	50 ± 3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	XTE J1118+480	K5V	4.08 ± 0.003	709 ± 1	6.27 ± 0.04	8.53 ± 0.60	0.04 ± 0.01	68 ± 2	96^{+3}_{-11}
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	XTE J1859+226	K5V?	6.58 ± 0.05	541 ± 70	4.5 ± 0.6	> 5.42		< 70	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V4641 Sgr	B9III	67.60 ± 0.01	211 ± 3	2.7 ± 0.1	6.4 ± 0.6	0.45 ± 0.04	72 ± 4	100.9 ± 0.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	XTE J1550-564	G8-K4IV	37.00880 ± 0.00006	363 ± 6	7.65 ± 0.38	9.1 ± 0.6	≈ 0.03	75 ± 4	55 ± 5
GRS 1915+105K1-5III812 ± 4126 ± 17.02 ± 0.1710.1 ± 0.60.042 ± 0.02470 ± 221 ± 4GRO J0422+32M0-5V5.094 ± 0.002378 ± 16 1.19 ± 0.02 3.95 ± 0.95 0.12 ± 0.08 45 ± 2 90^{+22}_{-27} N. Mus 91K3-5V 10.40 ± 0.01 406 ± 7 3.01 ± 0.15 6.95 ± 0.6 0.13 ± 0.04 54 ± 1.5 106 ± 13 V404 CygK0IV (±1) 155.31 ± 0.02 208.5 ± 0.7 6.08 ± 0.06 12 ± 2 0.067 ± 0.005 55 ± 4 39 ± 1 GS 2000+251K3-6V 8.25809 ± 0.00005 520 ± 16 5.01 ± 0.12 9 ± 2 0.042 ± 0.012 66 ± 8 86 ± 8 BW CirG5III 61.07 ± 0.002 279 ± 5 5.73 ± 0.29 $\geq 7.6 \pm 0.7$ $0.12^{\pm 0.03}_{-0.04}$ ≤ 79 69 ± 8 N. Oph 77K3-7V 12.51 ± 0.03 447 ± 3 4.86 ± 0.13 6.5 ± 1.5 < 0.053 $< 0.067 \pm 0.004$ 51 ± 1 GX 339-4 42.14 ± 0.01 317 ± 10 5.8 ± 0.5 $\gtrsim 6$ ≤ 0.125 < 0.125	GRO J1655-40	F6IV	62.91 ± 0.003	215 ± 2	2.73 ± 0.09	6.7 ± 1.2	0.42 ± 0.03	70 ± 2	87 ⁺⁸ -4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N. Vel 93	K7–M0V	6.84492 ± 0.00002	475 ± 6	3.2 ± 0.1	~ 4.4	0.14 ± 0.01	37-80	50-100
N. Mus 91K3-5V 10.40 ± 0.01 406 ± 7 3.01 ± 0.15 6.95 ± 0.6 0.13 ± 0.04 54 ± 1.5 106 ± 13 V404 CygK0IV (±1) 155.31 ± 0.02 208.5 ± 0.7 6.08 ± 0.06 12 ± 2 0.067 ± 0.005 55 ± 4 39 ± 1 GS 2000+251K3-6V 8.25809 ± 0.00005 520 ± 16 5.01 ± 0.12 9 ± 2 0.042 ± 0.012 66 ± 8 86 ± 8 BW CirG5III 61.07 ± 0.002 279 ± 5 5.73 ± 0.29 $\geq 7.6 \pm 0.7$ $0.12^{+0.03}_{-0.04}$ ≤ 79 69 ± 8 N. Oph 77K3-7V 12.51 ± 0.03 447 ± 3 4.86 ± 0.13 6.5 ± 1.5 < 0.053 A0620-00K4V 7.7523372 ± 0.000002 433 ± 3 2.76 ± 0.01 6.6 ± 0.3 0.067 ± 0.004 51 ± 1 GX 339-4 42.14 ± 0.01 317 ± 10 5.8 ± 0.5 $\gtrsim 6$ ≤ 0.125 ≤ 0.125	GRS 1915+105	K1–5III	812 ± 4	126 ± 1	7.02 ± 0.17	10.1 ± 0.6	0.042 ± 0.024	70 ± 2	21 ± 4
V404 CygK0IV (±1)155.31 ± 0.02208.5 ± 0.7 6.08 ± 0.06 12 ± 2 0.067 ± 0.005 55 ± 4 39 ± 1 GS 2000+251K3-6V 8.25809 ± 0.00005 520 ± 16 5.01 ± 0.12 9 ± 2 0.042 ± 0.012 66 ± 8 86 ± 8 BW CirG5III 61.07 ± 0.002 279 ± 5 5.73 ± 0.29 $\geq 7.6 \pm 0.7$ $0.12^{+0.03}_{-0.04}$ ≤ 79 69 ± 8 N. Oph 77K3-7V 12.51 ± 0.03 447 ± 3 4.86 ± 0.13 6.5 ± 1.5 < 0.053 A0620-00K4V 7.7523372 ± 0.000002 433 ± 3 2.76 ± 0.01 6.6 ± 0.3 0.067 ± 0.004 51 ± 1 GX 339-4 42.14 ± 0.01 317 ± 10 5.8 ± 0.5 $\gtrsim 6$ ≤ 0.125 ≤ 0.125	GRO J0422+32	M0-5V	5.094 ± 0.002	378 ± 16	1.19 ± 0.02	3.95 ± 0.95	0.12 ± 0.08	45 ± 2	90^{+22}_{-27}
GS 2000+251K3-6V 8.25809 ± 0.00005 520 ± 16 5.01 ± 0.12 9 ± 2 0.042 ± 0.012 66 ± 8 86 ± 8 BW CirG5III 61.07 ± 0.002 279 ± 5 5.73 ± 0.29 $\geq 7.6 \pm 0.7$ $0.12^{+0.03}_{-0.04}$ ≤ 79 69 ± 8 N. Oph 77K3-7V 12.51 ± 0.03 447 ± 3 4.86 ± 0.13 6.5 ± 1.5 < 0.053 A0620-00K4V 7.7523372 ± 0.000002 433 ± 3 2.76 ± 0.01 6.6 ± 0.3 0.067 ± 0.004 51 ± 1 GX 339-4 42.14 ± 0.01 317 ± 10 5.8 ± 0.5 $\gtrsim 6$ ≤ 0.125	N. Mus 91	K3-5V	10.40 ± 0.01	406 ± 7	3.01 ± 0.15	6.95 ± 0.6	0.13 ± 0.04	54 ± 1.5	106 ± 13
BW Cir G5III 61.07 ± 0.002 279 ± 5 5.73 ± 0.29 $\geq 7.6 \pm 0.7$ $0.12^{+0.03}_{-0.04}$ ≤ 79 69 ± 8 N. Oph 77 K3-7V 12.51 \pm 0.03 447 \pm 3 4.86 ± 0.13 6.5 ± 1.5 < 0.053 A0620-00 K4V 7.7523372 ± 0.000002 433 ± 3 2.76 ± 0.01 6.6 ± 0.3 0.067 ± 0.004 51 ± 1 GX 339-4 42.14 ± 0.01 317 ± 10 5.8 ± 0.5 $\gtrsim 6$ ≤ 0.125	V404 Cyg	K0IV (±1)	155.31 ± 0.02	208.5 ± 0.7	6.08 ± 0.06	12 ± 2	0.067 ± 0.005	55 ± 4	39 ± 1
N. Oph 77 K3-7V 12.51 \pm 0.03 447 \pm 3 4.86 \pm 0.13 6.5 \pm 1.5 < 0.053 A0620-00 K4V 7.7523372 \pm 0.000002 433 \pm 3 2.76 \pm 0.01 6.6 \pm 0.3 0.067 \pm 0.004 51 \pm 1 GX 339-4 42.14 \pm 0.01 317 \pm 10 5.8 \pm 0.5 \geq 6 \leq 0.125	GS 2000+251	K3-6V	8.25809 ± 0.00005	520 ± 16	5.01 ± 0.12	9 ± 2	0.042 ± 0.012	66 ± 8	86 ± 8
N. Oph 77 K3-7V 12.51 \pm 0.03 447 \pm 3 4.86 \pm 0.13 6.5 \pm 1.5 < 0.053 A0620-00 K4V 7.7523372 \pm 0.000002 433 \pm 3 2.76 \pm 0.01 6.6 \pm 0.3 0.067 \pm 0.004 51 \pm 1 GX 339-4 42.14 \pm 0.01 317 \pm 10 5.8 \pm 0.5 \geq 6 \leq 0.125	BW Cir	G5III	61.07 ± 0.002	279 ± 5	5.73 ± 0.29	$\geq 7.6 \pm 0.7$	$0.12^{+0.03}_{-0.04}$	≤79	69 ± 8
GX 339-4 42.14 ± 0.01 317 ± 10 5.8 ± 0.5 $\gtrsim 6$ ≤ 0.125	N. Oph 77	K3-7V	12.51 ± 0.03	447 ± 3	4.86 ± 0.13	6.5 ± 1.5			
	A0620-00	K4V	7.7523372 ± 0.0000002	433 ± 3	2.76 ± 0.01	6.6 ± 0.3	0.067 ± 0.004	51 ± 1	
AU 1542 475 A 2V 26 0 + 0 2 124 + 4 0 22 + 0 06 5 0 + 2 5 0 25 0 21 20 + 6	GX 339-4		42.14 ± 0.01	317 ± 10	5.8 ± 0.5	≳ 6	≤ 0.125		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4U 1543-475	A2V	26.9 ± 0.2	124 ± 4	0.22 ± 0.06	5.0 ± 2.5	0.25-0.31	30 ± 6	

Statistical analysis of the observational and dynamical parameters of the sample:

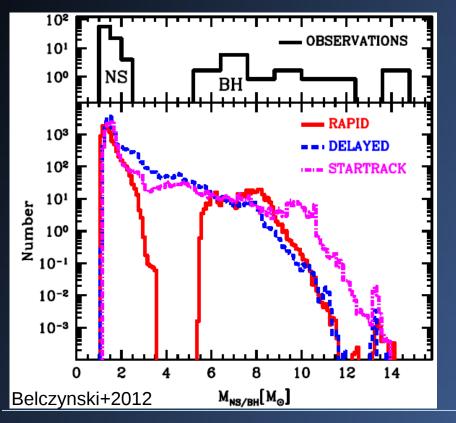
- Inclinations: none eclipsing although 20% expected for a random distribution hidden from view (Narayan&McClintock05)
- Swift J1357.2-0933 may be the first edge-on BH (Corral-Santana+13). But Armas Padilla+13 presented an alternative explanation.

Distribution of confirmed BHTs


- Bimodal period distribution with major peak at 6-10h and gap at 15h (bifurcation period; Menou+1999) due to evolutionary paths.
- Distribution M_{R} shows peak at ~4-6 (in agreement with MS K-type)
- Note the 3 IMXBs: GROJ1655, V4641Sgr and 4U1543-475 (in black)

Corral-Santana+14, in prep.

Mass distribution


- Uncertainties in the mass of 20-30% due to the low accuracy in the inclination
- Mass distribution should be smooth by correlation with masses of progenitors stars

There seems to be a gap at 2-5Msun.
The existence of the gap is probably real (Ozel+10, Farr+11)

Mass distribution

- Uncertainties in the mass of 20-30% due to the low accuracy in the inclination
- Mass distribution should be smooth by correlation with masses of progenitors stars

- There seems to be a gap at 2-5Msun.
- The existence of the gap is probably real (Ozel+10, Farr+11)
- However some SN models with hydrodinamic simulations can reproduce the gap (Belzynski+12)
- But poor statistics and possible systematic errors in inclination.

A CATALOGUE OF GALACTIC BLACK HOLES IN X-RAY BINARIES

UPDATED: JUNE 2014 - V0.5

ID#	YEAR	NAME	RA	DEC	1	b	Mout	Mqui	E(B-V)	d	Z	Sp.Ty.	Porb	K2	f(M)	M1	q	i	v sini
			J2000	J2000	deg	deg	mag	mag	mag	крс	крс		h	km/s	Msun	Msun		deg	km/s
34	2001	XTEJ1650-500	16 50 00.98	-49 57 43.60	336.7182	-03.4270		R~20.2	1.19	2.6±0.7	-0.15	K4V	7.6	435±30	2.7±0.6	≤7.3±0	>0.1	50±3	
33	2000	XTEJ1118+480	11 18 10.85	48 02 12.90	157.6607	62.3206	V=12.9	R=19	0.011	1.72±0.1	1.52	K7V	4.08	709±7	6.3±0.2	8.53±0.6	0.04±0.01	68±2	
32	1999	XTEJ1859+226	18 58 41.58	22 39 29.40	054.0461	08.6076	R~15	R=22.4	0.491	11-14	1.6-2.1	K5V	6.56	541±70	4.5±0.6	>5.42		<70	
31	1999	SAXJ1819.3-2525	18 19 21.58	-25 24 25.10	006.7740	-04.7891	V~8?	R~13.5?	0.32	6.2±0.7	-0.82	B9III	67.6	211±3	2.7±0.1	6.4±0.6	0.45±0.08	72±4	100.9±0.8
30	1998	XTEJ2012+381	20 12 37.71	38 11 01.10	075.3883	02.2471	R=19.9		1.9-										
29	1998	XTEJ1748-288	17 48 05.06	-28 28 25.80	000.6756	-00.2220			HIGH										
28	1998	XTEJ1550-564	15 50 58.78	-56 28 35.00	325.8825	-01.8269	V=16.6	V=22	1.604	~5.3	~-0.17	G8-K4IV	37	361±18	6.86±0.71	10±2	0.09-0.15	73.1±2.3	
27	1997	XTEJ1755-324	17 55 28.60	-32 28 39.00	358.0393	-03.6314			1.105										
26	1997	GRS1737-31	17 40 09.00	-31 02 24.00	357.5880	-00.0990			HIGH										
25	1996	GRS1739-278	17 42 40.03	-27 44 52.70	000.6721	01.1758		R=20.5	2-										
24	1996	XTEJ1856+053	18 56 42.92	05 18 34.30	038.2690	01.2720	Ks=16.4		>5										
23	1994	GRS1730-312	17 33 32.00	-31 12 16.00	356.6877	01.0065			>5										
22	1994	GROJ1655-40	16 54 00.14	-39 50 44.90	344.9819	02.4560		V=17.3	1.2	3.2±0.2	0.13	F6IV	62.9	215±2	2.73±0.09	6.7±1.2	0.39±0.05	70±2	26±3
21	1993	GRS1716-249	17 19 36.93	-25 01 03.43	000.1423	06.9909	V=16.3	R≥20	0.9	2.4±0.4	0.29								
20	1993	GR01009-45	10 13 35.60	-45 04 35.31	275.8773	09.3439	V=13.8		0.193	3.8±0.3	0.62	K7-8V	6.844944(3)	475±6	3.2±0.1	~4.4	0.14±0.01	~78	
19	1992	GRS1915+105	19 15 11.55	10 56 44.80	045.3656	-00.2194		I=23.4	9.6	≤11.2±0.8	≤-0.04	K1-5III	804	140±15	9.5±3	14±4	0.058±0.033	70±2	
18	1992	GR0J0422+42	04 21 42.79	32 54 35.80	165.8790	-11.9108	R=12.6	R=20.9	0.24	2.5±0.3	-0.54	M2V	5.094±0.002	378±16	1.19±0.02	3.95±0.95	0.12±0.08	45±2	90±^22-27
17	1991	GRS1124-684	11 26 26.65	-68 40 32.83	295.3005	-07.0726	V=13.3	R=19.9	0.3	5.9±0.3	-0.72	K3-5V	10.4±0.01	406±7	3.01±0.15	6.95±0.6	0.09-0.17	54±1.5	106±13
16	1990	GRS1758-258	18 01 12.40	-25 44 36.10	004.5077	-01.3610		K=13.6	3.2										
15	1989	GS2023+338	20 24 03.82	33 52 01.90	073.1188	-02.0914	V=12.7	R=16.4	1.3	2.39±0.14	-0.08	K0IV(+-1)	155.314	208.5±0.7	6.08±0.06	12±2	0.055-0.064	55±4	39±1
14	1988	G\$1734-275	17 36 02.00	-27 25 41.00	000.1608	02.5906			1.478										
13	1988	GS2000+251	20 02 49.58	25 14 11.30	063.3666	-02.9989	B=17.5	R=21.2	1.5	2.7±0.7	-0.14	K3-6V	8.3	520±16	5.01±0.12	10±4	0.042±0.012	61±14	86±8
12	1987	G\$1354-64	13 58 09.73	-64 44 05.22	309.9774	-02.7797	V=16.9	R=22	1	~25	~-1.21	G5III	61.1	279±5	5.73±0.29	≥7.6±0.7	0.08-0.15	≤79	69±8
11	1985	EX01846-031	18 49 16.91	-03 03 52.70	029.9585	-00.9177		I>22	17										
10	1985	SLX1746-331	17 49 48.94	-33 12 11.60	356.8069	-02.7797			1.416										
9	1977	H1705-250	17 08 14.58	-25 05 29.00	358.5874	09.0569	V~16	R=20.8	0.472	8.6±2.1	1.35	K3-7V	12.5	447±3	4.86±0.13	5.6-8.3	<0.053		
8	1977	H1743-322	17 46 15.61	-32 13 59.90	357.2552	-01.8330	R=21.9		3.478										
7	1975	A0620-003	06 22 44.54	00 20 44.40	209.3382	-06.2225	V=11.2	R=17.4	0.39	1.16±0.11	-0.13	K4V	7.8	433±3	2.72±0.06	11±2	0.05-0.07	40±3	
6	1974	A1524-617	15 28 17.20	-61 52 58.50	320.3191	-04.4272	B=17.5	R=22.7	0.697										
5	1972	J1659-487	17 02 49.44	-48 47 22.60	338.9393	-04.3264	V=15.5	R~20.1	0.911	>6	>-0.4	GIV	42.1	317±10	5.8±0.5	≥7	≤0.125		
4	1971	4U1755-338	17 58 40.04	-33 48 26.80	357.2155	-04.8724	V=18.5	R>21.5	0.696										
3	1971	4U1630-472	16 34 03.02	-47 22 56.70	336.9217	00.2545			HIGH										
2	1971	4U1543-475	15 47 08.70	-47 42 50.70	330.9266	05.3626	V=14.9	R~16.2?	0.5	7.5±0.5	0.71	A2V	26.9	124±4	0.22±0.06	5±2.5	0.25-0.31	30±6	
1	1966	Cen-X-2	13 58 00.00	-64 42 00.00	310.0000	-02.7000			1.324										

www.astro.puc.cl/~jcorral/BHTcat - available soon. Save in bookmarks!

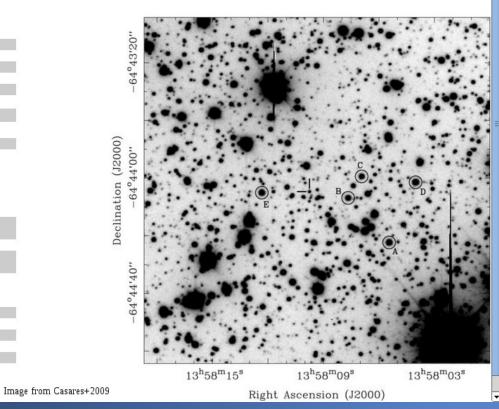
GS1354-64 (BW Cir)

ID#: 12

RA J2000(hms) DEC J2000(dms) 13 58 09.73 -64 44 05.22 Kitamot

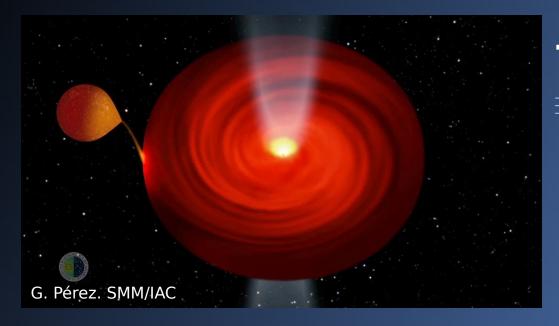
Kitamoto+1990

Gal. long (deg) Gal. lat. (deg) 309.9774 -02.77966


Year of discovery: 1987 Makino1987

DYNAMICAL PARAMETERS

Description	Parameter	Value	Reference
Spectral type		~G5 IV	Casares+2009
Distance	d (kpc)	~25	Casares+2009
Galactic height	z (kpc)	~-1.21	Casares+2009
E(B-V)	E(B-V)	1.0	Casares+2009
Orbital period	Porb (h)	61.1	Casares+2009
Star's radial vel.	K ₂ (km/s)	279±5	Casares+2004
Mass function	f(M ₁) [Msun]	5.73±0.29	Casares+2004
Mass ratio	$q=M_2/M_1$	0.12+0.03-0.04	Casares+2004
Inclination	i (deg)	<79	Casares+2009
Rotational broadening	Vrot sini (km/s)	69±8	Casares+2009


OBSERVATIONAL PARAMETERS

Parameter	Value	Reference
Flux (erg/s/cm^2) [band keV]	2.9x10-9 [1-10]	Makino1989 Kitamoto+1990
B (mag)		
V (mag)	16.9 o 22.14 q	Pedersen+1987 Casares+2009
R (mag)	20.4 q 20.65 q 20.5 q	Casares+2004 Casares+2009 Martin95
I (mag)	19.73 q	Casares+2009

www.astro.puc.cl/~jcorral/BHTcat - available soon. Save in bookmarks!

Comments, suggestions, new data, new discoveries, ... jcorral@astro.puc.cl

Thank you