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ABSTRACT 

This paper describes a method for determining the optimal period of pulsars and consequently their light 
curves, by means of the Principal Component Analysis (PCA) applied to the so-called waterfall diagram, 
which is a bi-dimensional representation of the pulsar photometric data. 
To test the method, the PCA was applied to sets of arrival times of photons from the brightest optical 
pulsars (Crab, B0540-69, Vela) measured with our fast photon counters Aqueye and Iqueye. Comparison 
with results obtained with the more usual technique of epoch folding shows that the periods determined 
via the PCA not only agree, but that actually their errors are smaller. 
 
1. Introduction 
 
High time resolution astrophysics (HTRA) investigates celestial objects presenting rapid photometric 
variability, such as occultations, oscillations in white dwarfs, flickering in cataclysmic variables, rapid 
variability in neutron stars, X-ray binaries and accreting compact objects, and so on. Among these 
phenomena, pulsars are probably the most studied ones with HTRA instruments and methods. A 
characteristic of these objects is their (quasi) periodic signal, produced by a spinning neutron star with an 
approximately conical beacon-like emission beam. With our instruments Aqueye (Barbieri et al. 2009a,b) 
applied to the Asiago Copernicus telescope (Italy), and Iqueye (Naletto et al. 2009) applied to the ESO New 
Technology Telescope (La Silla, Chile), we have investigated three optical pulsars accessible to medium size 
telescopes, namely PSR B0531+21 (the Crab pulsar, Germanà et al. 2012, Zampieri et al. 2014 ), PSR B0540-
69 in the Large Magellanic Cloud (Gradari et al. 2011), and PSR B0833-45 (the Vela pulsar, Codogno et al. 
2011). For the properties of optical pulsars, see e.g. Mignani 2011.  
 
A most important analysis on the pulsar light curves is the optimal determination of the instantaneous 
period and of its variation with time, because many information can be obtained on emission mechanisms, 
lifetime and evolution. An important observational quantity is the so called ‘braking index’ n, consistently 
found below the canonical value n = 3, applicable if braking was due only to radiative losses.  
To obtain the best  periods and light curves, different techniques have been developed, depending on the 
available instrumentation, accessible spectral range and signal strength. The usual case for optical pulsars 
observed with medium class telescopes is acquiring photons in time bins much shorter than the period of 
the pulsar. Therefore, each time bin will contain very few or even no photons, and actually there will be a 
null signal in the large majority of cases, with no clear evidence of periodicity. Dedicated analysis tools are 
requested to identify accurate values of periodic or quasi periodic features.  
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In this paper we will describe an application of the Principal Component Analysis (PCA) to the optimal 
determination of periodicity in the Aqueye and Iqueye time stamps from the Crab pulsar, PSR B0540-69 and 
the Vela pulsar. Section 2 gives a short description of standard techniques used to estimate pulsar periods. 
Section 3 describes the PCA method. Finally, Sections 4 and 5 explain how to apply the PCA to the waterfall 
diagram to determine the pulsar optimal period and a confidence interval . It is shown that the PCA periods 
not only agree with those determined by other techniques, in particular epoch-folding, but actually have 
slightly better precisions. 
 
2. Common techniques to determine the pulsar period 
 
A first convenient step to identify the presence of periodicity is to calculate the Fast Fourier Transform (FFT) 
of the signal, as shown in Figure 1.  

 

Figure 1 – The frequency spectrum of three optical pulsars, Crab (top), B0540-69 (middle), Vela (bottom) obtained 
with Iqueye at the NTT. One hour long acquisitions, data binned at 1 ms. 

The FFT algorithm has some significant limitations, mainly because the determination of the optimal 
frequency is hampered by the poor frequency resolution, which depends on the number of input elements 
and on the ability of the software to deal with large arrays. Therefore, the FFT can be used for the detection 
of a periodic signal, but in a second step more accurate analyses must be performed. A very consolidated 
technique is ‘epoch folding’ (Leahy (1983); Leahy et al. (1983); Leahy (1987); Gregory & Loredo (1992); 
Larsson (1996)). A reasonable initial period P is assumed, then the detected signal as function of time is 
divided modulo a trial period Pt close to P. The trial period Pt is divided into N period time bins and the data 
modulo Pt are co-added into these time bins (often, the phase period is used instead of the time period, 
with the phase period ranging between 0 and 1). By co-adding (folding) the signal over a large number of 
periods, assuming the period constant over the time of folding, the statistics per period time bin is largely 
increased, and a first light curve is generated.  At this point, Pt is varied by small amounts, and a whole set 
of light curves is produced.  The optimal light curve is the one which maximizes a suitable merit function. 
Thus, the problem of finding the best light curve is reduced to the definition of the best merit function. A 
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fairly common algorithm used to this aim is the calculation of the χ2 value:  the highest χ2 value indicates 
the most accurate light curve. Suitable algorithms can be found on dedicated libraries, for example the 
timing analysis software for X-ray Astronomy Xronos  
https://heasarc.gsfc.nasa.gov/docs/xanadu/xronos/xronos.html 
 
Another method is the ‘waterfall diagram’. The signal is similarly folded to increase the statistics, but the 

procedure is different: the total observation time is divided into M time intervals, usually with M ≥ 20, and 
folding is performed separately over each time interval with a common trial period Pt , so obtaining M light 
curves. Then, each light curve is stacked as a row in a matrix; by associating a colour scale to the light curve 
signal intensity, this matrix can finally be represented as a colour image. Notwithstanding its simplicity, the 
accuracy of this method is quite remarkable, and period values as accurate as those obtained by the epoch 
folding technique can be obtained. An example of such accuracy is shown in Figure 2, obtained from a 120 
minutes observation of the Crab pulsar with Iqueye and using M = 2000. The time bin in such example was 
4x10-5 seconds. A very slight curvature of the lines can be noticed. Indeed, the folding period was correct at 
the centre of the observations interval, but phase shifts occurred as a consequence of the extremely small 

Crab pulsar spin-down. The residual curvature allows to measure such period variation, namely dP/dt ≈ 4:2

×10-13 s/s at the time of observation (Zampieri et al. 2014), corresponding to a change in the period of only 

3 ns from the beginning to the end of the observation, or equivalently to a total phase variation of −0.0096.  
 

 
Figure 2 . Waterfall diagram of a two hours Crab pulsar acquisition with Iqueye at NTT on 15 December 2009, 
binned at 4x10

-5
 s. The slight curvature of the vertical lines is due to the pulsar spin-down during the two hours.  
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Although extremely accurate and sensitive, the waterfall diagram method can be applied with good results 
only when the searched periodic signal is high with respect to the noise (i.e. SNR > 5). When the noise is not 
negligible, the signal in the waterfall image has a very poor contrast making extremely difficult to detect 
any periodicity. As an example, Figure 3 shows the waterfall diagram for a set of Iqueye data of B0540-69, 
(where SNR ≪ 1),using M = 20 and the nominal folding period. Clearly, no straight vertical feature is 
evident, at least by eye. 
 

 
 
Figure 3. Waterfall diagram of B0540-69 observed for 30 minutes with Iqueye at the NTT and binned at 1x10

-3
 s. No 

vertical feature is evident, even if the data have been folded in only 20 rows. 

The idea at the basis of this paper is to understand if a suitable analysis can extract the ‘hidden’ information 
from images like the one shown in Figure 3. We show that the Principal Component Analysis offers such a 
tool. 
 
3. Principal Component Analysis 

The Principal Components Analysis (Pearson (1901)) is a mathematical tool used in statistics, signal 
processing, meteorology, image compression, computer graphics, and so on. Depending on the application, 
the technique is subject to small differences in implementation, and so it is often named in different ways, 
Principal Component Analysis (PCA), Independent Component Analysis (ICA), Proper Orthogonal 
Decomposition (POD), Karhunen-Loève Transform (KLT, Karhunen 1947, Loève 1978), Hotelling Transform 
(HT, Hotelling 1933, 1936), and many others.  
PCA is a non-parametric method to extract information from data of otherwise difficult interpretation. 
Practically, PCA provides a way to identify patterns in data: from a geometrical point of view, this 
corresponds to represent the data in a reference frame able to highlight the data structures. To achieve 
such representation, the algorithm uses an orthogonal transformation to convert a set of observations of 
possibly correlated variables into a set of values of uncorrelated variables called Principal Components 
(PCs). The first PC has a variance as high as possible, accounting for as much as possible of the variability in 
the data, and each following component has in turn the highest possible variance under the constraint that 
it has to be orthogonal to (uncorrelated with) the preceding components. Figure 4 illustrates the simple 
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example of a two-dimensional (x,y) data sets having a first principal direction of variation, identified with 
the u axis and a second important direction orthogonal to u, that is the v axis. 

 

Figure 4. Given a bi-dimensional dataset, the PCA allows to identify the directions (u,v) of orthogonal maximum 
variances. 

The PCA allows to identify these two directions and assign them a priority on the basis of where the data 
have the largest dispersion. In other words, the data set is arranged by PCA in a new reference frame (u, v) 
having origin at the centroid of the data and oriented in order to have uncorrelated data, that is their co-
variance with respect to the (u, v) coordinates is zero. The directions of these axes are the so-called 
Principal Components. 
The PCA algorithm consists of five steps. The first is to subtract the data mean values, independently on 
each variable. Then, the covariance matrix C is calculated: in the example of Figure 4, C will be a 2 × 2 
matrix. The third step is the calculation of eigenvectors ei and corresponding eigenvalues λi of the 
covariance matrix C. This process is equivalent to finding the reference frame in which the covariance 
matrix is diagonal, that is where the variables are uncorrelated: in this reference frame, the covariances 
(i.e. the non-diagonal elements of the matrix) are all equal to zero and only the variances (the diagonal 
elements) remain. The orientation of the axes of this reference frame are provided by the eigenvectors {ei}, 
which constitute an orthonormal basis, and the value of each eigenvalue λi is equal to the variance along 
the direction of the corresponding eigenvector ei. In the given example, the eigenvalues are equal to the 
variance of the data along the two eigenvectors (u, v), with the eigenvalue associated to the  u eigenvector 
being the largest. In the fourth step the eigenvectors ei are ordered by the corresponding eigenvalue λi 
from highest to lowest, to put the direction given by the eigenvectors in order of importance. If the ordered 
eigenvectors are used as columns of a matrix, a so-called feature vector F is obtained. This step allows to 
prioritize the PCs, with the most important ones retaining the largest amount of information, and decide 
the amount of original information to maintain, simply deciding how many PCs will be used in the following 
step. It often happens that only the first few PCs have large variances: discarding the less important PCs, 
the complexity of the system can be largely reduced at the acceptable price of taking out a minor amount 
of information. With the final fifth step, the new data set is obtained: the feature vector F is used as a 
transformation matrix that takes the data points from the (x,y) reference frame to the (u,v) one by means 
of the equation: 

A(u, v) = (A(x, y)− < A(x;, y) >) · F 

where A(x, y) is a point in the (x, y) reference frame, <A(x, y) > is the dataset centroid, and A(u, v) is the 

corresponding point in the (u,v) reference frame. Routines for PCA algorithms can be found in many 

scientific libraries. 
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4. Application of PCA to the waterfall diagram of the Crab pulsar 

In order to verify the possibility to apply the PCA to the pulsar waterfall diagrams to determine the optimal 

folding period, tests have been done firstly in the easiest case of the Crab pulsar. We used a dataset of 30 

minutes acquired with Aqueye in October 10, 2008 (Germanà et al. (2012)). The procedure was first to 

produce different N ×M waterfall diagrams Wi where i is the index associated to each trial folding period Ti . 

In the test we used N = 336 columns, i.e. 336 time bins in the folding period, and M = 100 rows, i.e. 100 

segments in which the whole acquisition was divided. Then we applied the PCA to each waterfall diagram, 

considering these images as M-dimensional datasets (i.e. a set of 336 100-dimensional hyper-vectors 

corresponding to the columns of the waterfall). From this analysis, a set of M-component eigenvectors ei.j 

and of the corresponding eigenvalues λi,j (j = 1,…, M) was obtained per each waterfall Wi. Looking at the 

eigenvalues obtained with the waterfall corresponding to the nominal period T*, it could be noticed that 

the one associated to the first PC was largely dominant over the others, providing a ratio Λi,1 = λI,1/(Σj=1,M λI,j) 

= 0.985, and that the components of the corresponding eigenvalue had all substantially the same value (≈ 

1=√100). This was actually an expected result: when the period is the optimal one, the data are ideally the 

same per each row of the waterfall, and the components of each hyper-vector are the same. This means 

that in the 100-dimension space defined by the eigenvector basis, the optimal M-dimensional dataset lays 

along the hyper-diagonal. In other words, all the points are aligned along the privileged direction where the 

dataset has the largest variance, which is the value provided by the eigenvalue, while in the other 

perpendicular directions the variance is almost zero. By analysing the eigenvalues for the various waterfalls 

Wi, it could be noticed that the ratio Λi,1 was increasing getting closer to the optimal folding period. All 

these considerations suggested to monitor the behaviour of the eigenvalue of the first PC to estimate the 

best folding period.  

 

Figure 5. PCA of for a 30 min acquisition of the Crab pulsar with Aqueye. Left: first eigenvalue vs folding period with 
100 ns step period increase. Right: First eigenvalue vs folding period with 0.1 ns step period increase. 

In Figure 5 the first PC eigenvalue is shown for two different cases: i) on the left, the folding period is 

changed at 100 ns steps, to make a rough search of the peak region; ii) on the right, the peak search is 

realized more finely in a smaller region with a step of 0.1 ns. In this case the highest value of the first 

eigenvalue is found in correspondence of a pulsar period of 33.62167033 ms: comparing this result with the 

one provided by the Jodrell Bank monthly ephemerides (Lyne et al. 1993, http://www.jb.man.ac.uk/ 

pulsar/crab.html ) at the same date of the Aqueye observations, a difference of only ≈ 10 ps is found. As 

shown in Figure 6, the first component contains essentially all the amount of useful information. 
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Figure 6. Left: the original waterfall diagram. Centre: the waterfall diagram obtained using only the first PC. Right: 
the light curve obtained by folding the data with the period found by means of the PCA. 

The application of PCA to the waterfall diagram actually allows to make a further check of the goodness of 

the result. Since ideally the first PC eigenvector should be parallel to the hyper-diagonal in the M-

dimensional space, the optimal period is obtained when the scalar product of this eigenvector with the 

hyper-diagonal unitary vector is maximum and equal to 1. The behaviour of this scalar product in the 

previously examined case is shown in Figure 7.  

 

Figure 7. Scalar product of the first PC eigenvalue with the 100-dimension hyper-diagonal by varying the trial 
period. In this plot, the nominal period is at the centre of the abscissa axis. 

This plot not only confirms that the largest scalar product corresponds to the nominal period, but in 

addition it allows to make a further interesting consideration: the value of the scalar product assumes 

values close to 1 only in a small range of the abscissa, with a discontinuity at about ±120 ns from the 

nominal period. Outside this range, the data are not aligned, and the first PC eigenvector is far from being 

parallel to the hyper-diagonal. Therefore, the behaviour of the scalar product can be used as a significant 

check on the confidence of the resulting period.  
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5. Application of PCA to the waterfall diagrams of the two other visible pulsars 
 
The same technique has been applied to the more difficult cases of the other two optical pulsars observed 
in 2009 with the Iqueye at the NTT: PSR B0540-69 in the Large Magellanic Cloud (Gradari et al. 2011), and 
PSR B0833-45 in the Vela supernova remnant (Codogno et al., 2011). In these cases, to reduce the noise it 
has been necessary to take M = 20 only, but the results have been extremely interesting anyway.  
 

 
 
Figure 8. First eigenvalue vs folding period (0.1 ns step period increase) for an 100 min acquisition of B0540-69. The 
central portion of the data is interpolated with a Gaussian fit, shown in red, to find the optimal peak value. 

As seen in Figure 8, which refers to an acquisition of 100 minutes of PSR B0540-69 on Dec. 13, 2009, the 
behaviour of the first PC eigenvalue as a function of the trial period is very noisy, and no peak is clearly 
defined. This problem was overcome by means of a standard Gaussian fit (in red): the period corresponding 
to the first PC eigenvalue peak is PPCA = (0.0506499723 ± 62)·10-9 s. To cross check the goodness of this 
result, we determined the best period on the same dataset also by means of the standard epoch folding 

technique. The period obtained in this way was PEF = (0.0506499745 ± 81)·10-9 s, just 2 ns longer than the 
PCA one. Not only the two values are equal within the quoted errors, but in addition the errors associated 
with the PCA are slightly lower than those of epoch folding. Such errors (2 sigma values) were estimated by 
the following method: a Monte Carlo analysis was applied to a synthesized signal equivalent to the pulsar 
observation, noise included. Thousand iterations were performed in each case and we applied either 
standard epoch folding analysis or waterfall PCA.  
The light curve obtained with the PCA best fitting period is compared in Figure 9 with the light curve 

obtained using the epoch folding technique and reported in Gradari et al. 2011. The latter has been 

obtained using more than 400 minutes of observations, and is clearly much smoother; however, it is also 

evident that the main features of the light curve, in particular the double structure of the main peak, are 

the same. 
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Figure 9. B0540-69. Left: light curve of a 100 minutes long data set obtained by folding the data with the period 
obtained by the PCA analysis. Right: same pulsar light curve obtained by epoch folding technique (Gradari et al. 
2011) with a 428 minutes observation. Two cycles are shown for clarity. 

Finally, we show the results obtained in the case of the Vela pulsar, acquired on 18 Dec. 2009. Although this 
pulsar is much fainter than B0540-69, the function of the first PC eigenvalue versus trial period is less noisy 
(see Figure 10), probably because the SN remnant around the pulsar is comparatively fainter than that of 
PSR B0540-69, and the disturbance due to the background is reduced.  
As before, a Gaussian fit and Monte Carlo analysis identifies the PCA period and its confidence interval, PPCA 
= (0.089366994 ± 21)· 10-9 s, to be compared with the epoch folding values PEF = (0.089366983 ± 44)·10-9 s. 
The difference between the two periods is ΔP = 11 ns, well within the quoted errors. Also in this case, the 
error estimated by the Monte Carlo simulation is smaller for the PCA than for the epoch folding technique. 
 

 
Figure 10. Left: first eigenvalue vs folding period (1 ns step period increase) for an acquisition of the Vela pulsar. The 
data are interpolated with a Gaussian fit, shown in red, to find the optimal peak value. Right: the very complex Vela 
pulsar light curve.  

The right panel shows the very complex light curve obtained by using the first component of PCA (Codogno 

et al., 2011). This optical light curve, to our knowledge the first one since 1998 (Gouiffes, 1998), is very 

complex and of difficult interpretation. 

We monitored also in these two cases the behaviour of the scalar product between the first PC eigenvalue 
and the unity vector parallel to the hyper-diagonal in the M-dimensional space (M = 20 in this case). The 
obtained results are shown in Figure 11. 
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Figure 11. Scalar product of the first PC eigenvector and the hyper-diagonal unity vector as a function of the trial 
period. The optimal period corresponds to the centre of the abscissa axis. Left: B0540-69 pulsar. Right: Vela pulsar. 

It can therefore be concluded that the scalar product allows to locate the optimal period in the limited 
region where the scalar product has values larger that 0.9. This is a sort of range of confidence which is 
slightly but significantly better than the one provided by the epoch folding technique. 
 
6. Conclusions 
 
We described in this paper the application of Principal Component Analysis to analyse the light curves of 
quasi-periodic objects like pulsars, in order to obtain their optimal periods and estimate a the range of 
confidence.  
 
PCA results have been compared to those of epoch folding. The two methods provide very similar values 
for the best period. The PCA provides an additional tool to determine a range of confidence on such values. 
It turns out that the PCA value is affected by a slightly but definitely smaller uncertainty.  
 
We conclude that PCA is a powerful tool for this type of analysis also when the signal is very weak. We 
applied the technique only to data acquired with our instruments, Aqueye and Iqueye, which work in visible 
light, but clearly it can be applied to other instruments and in all spectral ranges.  
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