next up previous contents index
Next: 11.1.2 Measure the Atmospheric Opacity Up: 11.1 Efficiency Measurements Previous: 11.1 Efficiency Measurements

11.1.1 Calculate the Flux of a Planet

The thermal emission from a planet may be represented:

 \begin{displaymath}S_\nu = B_\nu (T) (1 - e^{-\tau}) \Omega _s
\end{displaymath} (11.1)

where
B$_\nu$(T)
is Planck's Law, in the Rayleigh-Jeans limit, B$_\nu$(T) = 2k$\nu^2$/c2 T.
$\tau$
is the optical depth; for the planets, $\tau >>$ 1,
$\Omega_s$
is the solid angle of the source, $\pi$ $\theta_{eq}$ $\theta_{pol}$/4,
$\theta_x$
are the polar and equatorial angular diameters.
yielding,

 \begin{displaymath}S_\nu = {{2kT\nu^2}\over{c^2}} \pi \theta_s^2
\end{displaymath} (11.2)

The planetary diameters can be obtained from The Astronomical Almanac for the current year; for 1996, they can be found on pages E52-E77. The planetary temperatures for frequencies in the range 200-500 GHz, are summarized in Table 2.1



 
Table 11.1: Planetary Temperatures


 


Planet Frequency Temperature
Mercury 345 501
Venus 230 275
  345 300
Mars 230 207
Jupiter 227 171
  279 170
  337 174
  392 163
  451 167
Saturn 310 135
  451 270
Uranus 230 92
Neptune 230 88





SMTO Manual Version 6.5, © May 2002, The SMTO Staff