
Unveiling the next generation of massive stars: First results from ATLASGAL

F. Schuller, S. Bontemps, L. Bronfman, K. Menten, M. Walmsley, F. Wyrowski and the ATLASGAL consortium

Unveiling the next generation of massive stars:

First results from ATLASGAL

- <u>Outline</u> -

- APEX telescope and instruments
- introducing ATLASGAL
- census of high-mass star forming clumps
- ongoing follow-up projects
- future & perspectives, incl. data release

The APEX telescope

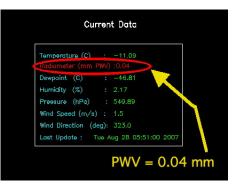
APEX : the Atacama Pathfinder Experiment

(Güsten et al. 2006, A&A 454, L13)

- Single dish 12 m submm antenna
- Copy of ALMA VERTEX antenna
- + surface accuracy 15 μ m rms $\Rightarrow \lambda = 200 \ \mu$ m - 2 mm
- + 2 Nasmyth cabins
 ⇒ many instruments

Collaboration

 MPIfR/MPG + ESO + OSO + Chile



The telescope Instruments LABOCA

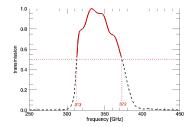
The APEX telescope

APEX : a submm site

APEX instruments

Bolometers

- LABOCA: 295 element at 870 μ m, FoV = 11 arcmin
- **SABOCA**: 37 element at 350 μ m, FoV = 1.5 arcmin Super-conducting bolometers (TES), multiplexing (SQUIDS)
- PI Instrument (Berkeley): APEX SZ Camera (→ SZ effect) 330 TES bolometers, λ = 1.4+2 mm, FoV = 20 arcmin at 2 mm
- In development (Saclay): **ARTEMIS** (cf. PACS / Herschel) $\lambda = 450 + 350 + 200 \ \mu m$


Heterodyne instruments

- Facility: 230 GHZ, 345 GHz, 670 GHz, 1.3 THz
- PI: FLASH (345 + 490 GHz), CHAMP+ (2×7 pixels, 670+860 GHz)

APEX instruments: LABOCA

LABOCA : the Large APEX BOlometer CAmera

- Array with 295 bolometers $\lambda = 870 \ \mu m$ (345 GHz) $\Delta \nu = 60 \ \text{GHz}$ Field of view: 11 arcmin
- APEX beam at 870 μ m = 19"

- \bullet Instrumental sensitivity (NEFD) $\sim 50~mJy~s^{1/2}$
- Observing modes:
 - linear "on-the-fly" mapping (> 1°), arbitrary angle
 - spirals and rasters of spirals
 - pointing on few Jy sources: one spiral 20 sec long

ntroduction Observations

APEX Telescope Large Area Survey of the Galaxy

European Southern Observatory

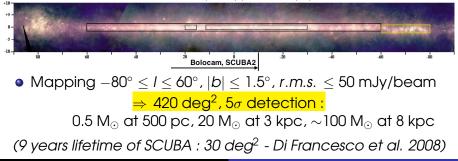
The APEX Telescope Large Area Survey of the Galaxy

Universidad de Chile

MPG : F. Schuller (PI), K. Menten, P. Schilke, F. Wyrowski, H. Beuther, T. Henning, H. Linz
ESO : M. Walmsley (co-PI), S. Bontemps, R. Cesaroni, L. Deharveng, F. Herpin, B. Lefloch, S. Molinari, F. Motte, V. Minier, L.-Å. Nyman, V. Reveret, C. Risacher, D. Russeil, N. Schneider, L. Testi, A. Zavagno Chile : L. Bronfman (co-PI), Y. Contreras, G. Garay, D. Mardones

Motivation

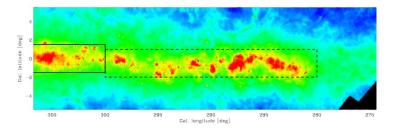
The quest for the earliest stages of HMSF


- Large scale mapping of HMSF regions (e.g. Motte et al. 2007: 3 deg² in Cygnus X) ⇒ only very few "real" high-mass star precursors
- The cold phase is very significant: \sim 50% of IR-quiet cores, but the lifetime of the *pre-stellar* phase is short, \leq 5×10⁴ yr.
- High-density gas is representing the gas which is going to form stars soon: high efficiency in the *dense* gas.
 - ⇒ Need for large scale survey in (cold) dense gas tracer : Only Galaxy-wide surveys can get significant samples
- Dust emission in the submm = the only optically thin tracer
 ⇒ direct measure of column densities ⇒ masses
 Unbiased view, detect all objects, all evolutionary stages
 BOLOCAM@CSO, SCUBA-2@JCMT, LABOCA@APEX

APEX Telescope Large Area Survey of the Galaxy

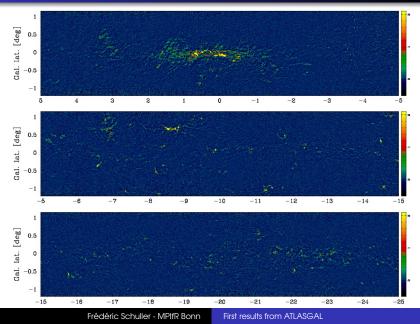
The 1st systematic survey of theGalactic Plane in submm

- Unbiased survey of the inner Galactic Plane at 870 $\mu m,$ with LABOCA (295-bolometer array) at APEX (beam: 19")
 - \rightarrow massive star formation throughout the Galaxy
 - \rightarrow pre-stellar initial mass function down to a few M_{\odot}
 - \rightarrow large scale structure of the cold ISM

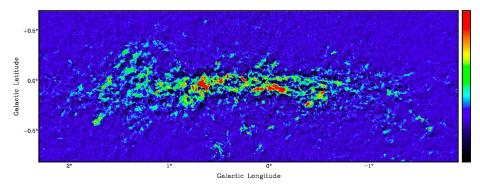

IRAS 12+60+100 μ m, $|I| \le 90^\circ$, $|b| \le 10^\circ$

Introduction Observations

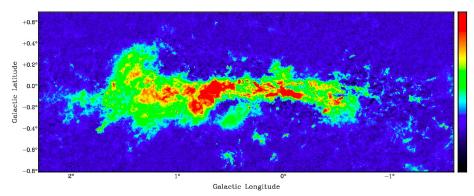
Status of observations


- Started in 2007 : 95 deg² covered, ~75 hours observing -30° ≤ I ≤ +11.5° and +15° ≤ I ≤ +21°, with |b| ≤ 1° (Schuller, Menten, Contreras et al. 2009, A&A 504, 415)
- Large programme 2008–2009 : – cover $|I| \le 60^{\circ}$, $|b| \le 1.5^{\circ}$, 1- $\sigma \le 50$ mJy/beam total = **360 deg**²
- 2010 (ongoing) : mapping $-80^{\circ} \le l \le -60^{\circ}$, $-2^{\circ} \le b \le +1^{\circ}$

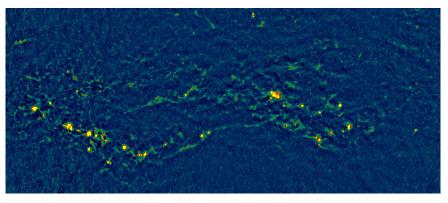
First results


- First **unbiased view** of high density gas in the Galaxy
- Hints on the **<u>nature</u>** of the sources
- **Distance** determination and Galactic structure

Example maps: 60 deg^2

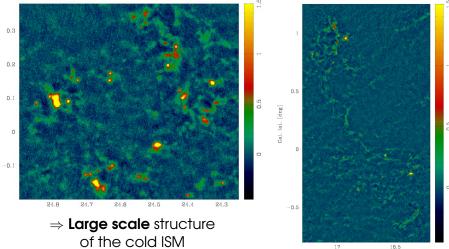

Example maps

The Central Molecular Zone

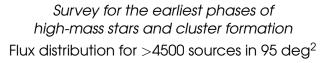

Example maps

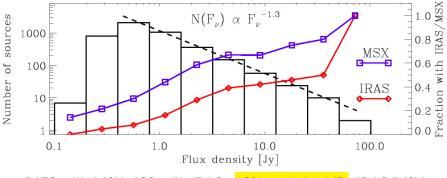
The Central Molecular Zone

Example maps


Norma arm: compact sources and long filaments

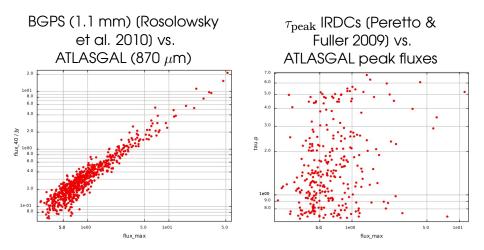
- Extended objects on arcmin scale
- Very long filaments, up to the degree scale!


Extended objects


Extended objects, filamentary structures From a few arcmin... ... up to degrees !

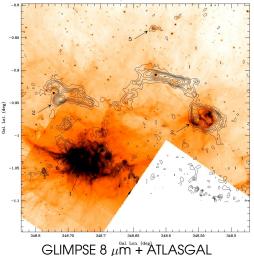
Frédéric Schuller - MPIfR Bonn

Compact sources



• 1670 with MSX, 600 with IRAS, 60% no bright IR (IRAS/MSX) (Contreras et al. in prep.)

Unbiased view Sources nature Distances


Compact sources



Unbiased view Sources nature Distances

Compact sources

HII regions, YSOs, IR-quiet sources, IRDC...

Spitzer + ATLASGAL

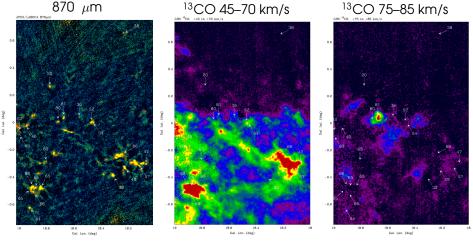
Compact sources

Sources in various stages

- Evolved objects : UCHII regions, embedded clusters...
- IR-quiet sources: starless or protostellar?
- We expect ~2000 precursors of high mass stars. (Beuther, Henning, Bontemps, Motte, Wyrowski, et al.)

 IRAS 17233-3606 : hot molecular core
 ⇒ Rich chemistry (Schilke et al.)

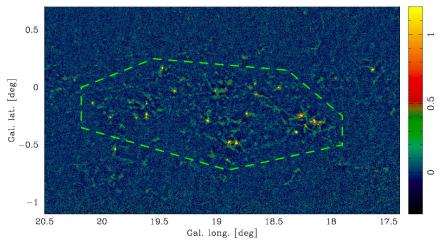
Distance determination: Method


We need distances to derive physics

- ATLASGAL = continuum survey \Rightarrow no direct distance
- Dust emission = missing link between CO complexes and SF activity (e.g. young embedded clusters seen in IR surveys)
 → allows to recognize large complexes up to >5 kpc.
 (complete catalog of GMCs exists up to ~1 kpc).
- use some public data, e.g. CS lines (Bronfman et al. 1996) \rightarrow only IRAS sources, small sample
- \bullet recognize complexes e.g. in Galactic Ring Survey \Rightarrow V_{LSR}
- heterodyne follow-ups, e.g. $NH_3 \Rightarrow V_{LSR}$
- extinction maps, Spitzer images \Rightarrow solve distance ambiguity

Unbiased view Sources nature Distances

Distance determination: GRS data


Large complexes in the GRS data (¹³CO)

Unbiased view Sources nature Distances

Distance determination: First results

Kinematic distances derived from NH₃ spectra **New complexes revealed**! Ex. around $I = +19^{\circ}$, D ~4 kpc

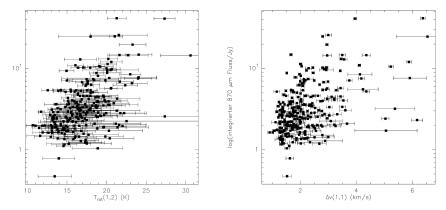
Distance determination: First results

Kinematic distances derived from NH₃ spectra **First results**

 New complexes revealed! clearly seen in ATLASGAL: dust emission is optically thin ⇒ traces the column density directly; not biased to neither warm regions (IR) nor to pure cold regions (CO).

Large scale Galactic structure :

• W43, G28, G23, G18.90 (*I* between 17 and 30 deg): could all be at the limit of the bar region


Distance determination: NH₃ lines

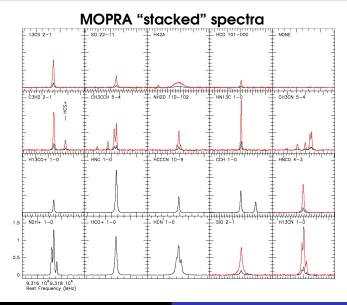
NH₃ (1,1), (2,2), (3,3) at Effelsberg + Parkes: <u>>1000 sources done</u>

(M. Wienen et al. in prep.)

Kinematic distances

+ gas temperature (T_{rot}) + turbulence (linewidth)

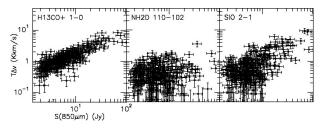
Heterodyne follow-up


Nature of the sources: **MOPRA** follow-up (Wyrowski et al. in prep. ; Fallon et al. in prep.)

- $\lambda = 3 \text{ mm}$, broad band spectrometer: 85–93 GHz \Rightarrow CS, SO, HCN, HCO⁺, HNC, N₂H⁺, SiO, CH₃CN, NH₂D...
- Beam = 36" (LABOCA: 19"), resolution $\delta v = 0.9$ km/s
- <u>Kinematic distances</u> + GMC velocity dispersion
- Physical conditions: virial masses, T, n
- <u>Kinematics</u>: infall & outflow
- Chemical cond.: cold / hot core chemistry, chemical clocks

Follow-up of 630 ATLASGAL sources

- Flux limited samples, with/without mid-IR
- one non-detection: a planetary nebula

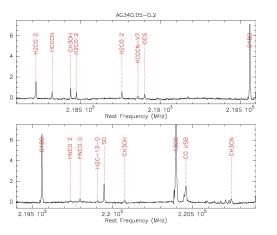

Heterodyne follow-up

Heterodyne follow-up

MOPRA follow-up of >600 ATLASGAL sources

• Good correlation dust / gas

- + deuterium fractionation
- + signatures of shocks

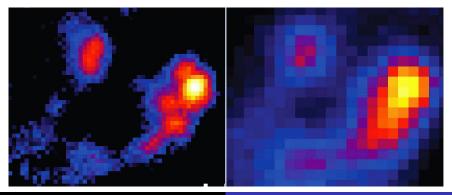

Work in progress ! (see poster by Wyrowski)

● + ...

More with MOPRA : MALT 90

Heterodyne follow-up with APEX

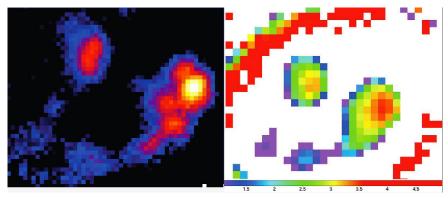
Follow-ups with APEX-1 (230 GHz)


- So far: 170 sources observed
- very complementary to MOPRA:
 - similar resolution
 - same molecules,

higher energy transitions

Follow-up observations with SABOCA

Mapping > 100 ATLASGAL sources at 350 μ m (Troost et al. in prep.)


- **SABOCA** = Submillimeter APEX BOlometer CAmera, 37-bolometer array at $\lambda = 350 \ \mu m$
- resolution = $7.5'' \Rightarrow$ study fragmentation

Follow-up observations with SABOCA

Mapping >100 ATLASGAL sources at 350 μ m (Troost et al. in prep.)

SABOCA + LABOCA ⇒ Spectral index → dust emissivity, temperature

Next steps

More follow-ups with APEX

- larger maps with SABOCA (but limited field of view 1.5')
- deep maps with LABOCA : help recover extended emission
- Heterodyne instruments : $\nu = 230 \text{ GHz} 1.3 \text{ THz}$

More spectral line follow-ups

- EMIR at IRAM 30 m: similar to MOPRA for the north
- high-resolution with ATCA

Combine data with other surveys

- Spitzer : GLIMPSE + MIPSGAL
- Herschel : Hi-GAL

Legacy value

• **Unbiased survey**, the only one covering $\pm 60^{\circ}$ in Gal. long. (BOLOCAM and SCUBA-2 limited to $l \ge -10^{\circ}$)

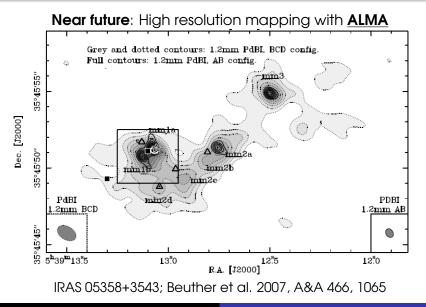
> ⇒ Statistical studies on the scale of the Galaxy (ex.: importance of triggered star formation) (Deharveng et al. 2010; see Poster)

- Well developed synergy w. Herschel KPs HOBYS and HiGAL (common people: Molinari, Motte, Schuller, Bontemps, Zavagno)
- Compact source catalog will be merged with MIPSGAL and Hi-GAL \Rightarrow ultimate homogeneous, complete, continuous database from 24 to 870 μ m at spatial resolution ~20"

+ Data will be public! High legacy value

Legacy value

Data products


- Coming soon: calibrated maps
- Publish Compact source catalog version 1, incl. associations with IRAS, MSX and RMS
- Catalog of extended objects
- Association with Spitzer surveys (GLIMPSE / MIPSGAL)
- Association with Hi-GAL (60–500 μ m)

ATLASGAL + Spitzer + Herschel + line identifications \Rightarrow SEDs from 3 to 870 μ m

+ kinematic distances + sources nature

www.mpifr-bonn.mpg.de/div/atlasgal/

Perspectives

Conclusion

The pathfinder for Galactic Star Formation

First unbiased Galactic plane survey at submm λ

- Characterize large scale structure of the Galaxy (cold ISM + star forming regions)
- Only a systematic survey can provide well controled samples for follow-ups with ALMA
- Only optically thin dust continuum can detect high column density objects in an unbiased way
- Only ATLASGAL will be complete (and completed !) in 2012 \rightarrow thousands of targets for high-resolution studies

Pathfinder for ALMA + Herschel, EVLA