INTRODUCTION

- Most young stars initially surrounded by protoplanetary discs
- Discs: precursors of planetary systems

Observed disc sizes
- Radius containing 90% of luminosity
- Typical disc sizes: 100 – 200 AU
- Most stars form in clusters [1]
- In dense clusters, encounters with other stars are common [2]

STAR-DISC ENCOUNTERS

- Encounter simulations
 - Low-mass disc
 - Prograde, coplanar, parabolic encounter
 - Star-disc encounters can be generalised to disc-disc encounters [4]
 - Parameter range like in ONC [2]
 - Task: Find new “edge” of disc

DISC-SIZE DETERMINATION

- Depending on encounter type: many particles on eccentric orbits
- No straightforward definition of size
- Time average of surface density distribution over 1000 yr after encounter
- Mimic observational size determination
- Use steepest gradient in outermost density contrast (Fig. 3)
- Error estimate: distance to inner edge of density contrast

Have a look at a encounter visualisation on http://tiny.cc/encounter_movie

CONCLUSION

- Disc size definition: Steepest gradient in surface density
- Fit function for sizes over parameter range in clusters:
 \[m = M_2/M_1 = [0.3 – 90] \]
 \[p \geq [0.1 – 2] \] (depending on \(m \))
- Applicable to all types of clusters

REFERENCES