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Abstract

Gravitational wave detectors have been under development since the pioneering work of Weber
in the 1960s. The long and painstaking research effort has yielded enormous improvements
in detector sensitivity. Astronomical observations of binary pulsar systems have confirmed
the existence of gravitational radiation. Direct detection is inevitable once planned detectors
reach sensitivity goals.

This review begins by introducing the concept of gravitational waves, and discusses their
significance. Section 2 discusses sources of gravitational waves, giving estimates of signal
characteristics and signal strengths. Section 3 presents an overview of gravitational wave
detection and the critical issues of data processing.

In the fourth section the physics of resonant-mass gravitational wave detectors is discussed
in some detail, covering all areas from antenna materials to transducers and the quantum limits
to measurement. This section reviews the major operating antennas in the existing worldwide
array but also discusses the prospects for achieving substantial increases in sensitivity in the
future.

The fifth section presents the concepts and designs for laser interferometer gravitational
wave detectors. Large-scale devices will be in operation in the first decade of the twenty-first
century and should eventually be certain of detecting a known class of gravitational wave
source. At their predicted sensitivity, space interferometers will be able to detect numerous
known galactic sources of gravitational waves and also will be able to detect black hole mergers
that are thought to have occurred as primordial galaxies merged and grew in the early universe.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)
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1. Introduction to gravitational waves

1.1. Listening to the universe

Our sense of the universe is provided predominantly by electromagnetic waves. During
the twentieth century the opening of the electromagnetic spectrum has successively brought
dramatic revelations. For instance, optical astronomy gave us the Hubble law expansion of
the universe. Radio astronomy gave us the cosmic background radiation, the giant radio jets
emerging from black holes in galactic nuclei and neutron stars in the form of radio pulsars.
X-ray astronomy gave us interacting neutron stars and black holes. Infrared astronomy gave
us evidence for a massive black hole in the nucleus of our own Galaxy.

Gravitational waves offer us a new sense with which to understand our universe. If
electromagnetic astronomy gives us eyes with which we can see the universe, then gravitational
wave astronomy offers us ears with which to hear it. We are presently deaf to the myriad
gravitational wave sounds of the universe. Imagine you are in a forest: you see a steep hillside,
massive trees and small shrubs, bright flowers and colourful birds flitting between the trees.
But there is much more to a forest: the sound of the wind in the treetops, the occasional crash
of a falling branch, the thump thump of a fleeing kangaroo, the pulse of cicadas, the whistles of
parrots and honking of bell frogs. The sense of hearing dramatically enriches our experience.

The gravitational wave universe is likely to be rich with ‘sounds’ across a frequency range
from less than one cycle per month (below one microhertz) up to tens of kilohertz. Frequencies
in the audio frequency band will be detectable using Earth-based detectors. But lower
frequencies will require observatories in space. Gravitational waves are produced whenever
there is non-spherical acceleration of mass–energy distributions. The lowest frequencies will
consist of extremely red-shifted signals from the very early universe, as well as the slow
interactions of very massive black holes, and a weak background from binary star systems.
Signal frequencies often scale inversely as the mass of the relevant systems. Black holes
below 100 solar masses, and neutron stars will produce gravitational waves in the audio
frequency range: nearly monochromatic whistles from millisecond pulsars, short bursts from
their formation, and chirrups from the coalescence of binary pairs.

During the twentieth century, at each opening of a new window in the electromagnetic
spectrum, the universe surprised us with unexpected phenomena. Our imagination and ability
to predict is limited. The sources we predict today are probably just a fraction of what we will
hear when our detectors reach sufficient sensitivity.

Gravitational waves are waves of tidal force. They are vibrations of spacetime which
propagate through space at the speed of light. They are registered as tiny vibrations of carefully
isolated masses. Their detection is primarily an experimental science, consisting of the
development of the necessary ultra-sensitive measurement techniques. While the gravitational
waves can be considered as classical waves, the measurement systems must be treated quantum
mechanically since the expected signals generally approach the limits set by the uncertainty
principle.

The binary pulsar PSR 1913+16 has played a key role in the unfolding story of gravitational
waves. This system has proved Einstein’s theory of general relativity to high precision,
including the quadrupole formula which states that the total emitted gravitational wave power
from any system is proportional to the square of the third time derivative of the system’s
quadrupole moment. The pulsar loses energy exactly as predicted by this formula [1]. Hulse
and Taylor, who discovered the system more than 20 years ago [2], were rewarded by a Nobel
prize in 1993, by which time careful monitoring had shown gravitational wave energy loss
from the system in agreement with theory to better than 1%.
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1.2. Gravitational waves in stiff-elastic spacetime

In Newtonian physics spacetime is an infinitely rigid conceptual grid. Gravitational waves
cannot exist in this theory. They would have infinite velocity and infinite energy density
because in Newtonian gravitation the metrical stiffness of space is infinite. Conversely general
relativity introduces a finite coupling coefficient between curvature of spacetime, described by
the Einstein curvature tensor, and the stress energy tensor which describes the mass–energy
which gives rise to the curvature. This coupling is expressed by the Einstein equation

T = c4

8πG
G. (1.1)

Here T is the stress energy tensor and G is the Einstein curvature tensor, c is the speed of light
and G is Newton’s gravitational constant. The coupling coefficient c4/(8πG) is an enormous
number, of order 1043. This expresses the extremely high stiffness of space which is the reason
that the Newtonian law of gravitation is an excellent approximation in normal circumstances,
and why gravitational waves have a small amplitude, even when their energy density is very
high.

The existence of gravitational waves is intuitively obvious as soon as one recognizes that
spacetime is an elastic medium. The basic properties of gravity waves can be easily deduced
from our knowledge of Newtonian gravity, combined with knowledge that spacetime curvature
is a consequence of mass distributions.

First, consider how gravitational waves might be generated. Electromagnetic waves are
generated when charges accelerate. Because a negative charge accelerating to the left is
equivalent to a positive charge accelerating to the right, it is impossible to create a time-
varying electric monopole. The process of varying the charge on one electrode always creates
a time-varying dipole moment. Hence it follows that electromagnetic waves are generated by
time-varying dipole moments. In contrast to electromagnetism, gravity has only one charge:
there is no such thing as negative mass! Hence it is not possible to create an oscillating mass
dipole. Action equals reaction. That is, momentum is conserved and the acceleration of one
mass to the left creates an equal and opposite reaction to the right. For two equal masses,
their spacing can change but the centre of mass is never altered. This means that there is a
time-varying quadrupole moment, but there is no variation in monopole or dipole moment.

To be certain of the quadrupole nature of gravitational waves, think of a system which
collapses under its own gravity. First think of a spherically symmetrical array of masses that
collapse gravitationally towards a point. At a distance there is no difference between the
gravitational field of a point mass and that of the same mass distributed in a uniform spherical
distribution. (This is a consequence of the inverse square law, and is also true for electric fields.)
Hence the process of gravitational collapse of a spherical distribution creates no variation in
the external gravitational field, and hence no gravitational waves. Clearly gravitational waves
must be created by non-spherical motions of masses. Consider a ring of eight test masses,
such as the one illustrated in figure 1.

The simplest non-spherical motion is one in which the edge masses move inwards and
the top and bottom masses move apart as shown in figure 1(a). Such a quadrupole motion
does vary the external field and does create gravitational waves. For a small amount of vertical
stretching, and an equal horizontal shrinking, it is obvious that the diagonally placed masses
have no radial motion. There is clearly a second polarization rotated 45◦ from the first in
which the diagonal masses move radially, and the top, bottom and edge masses have no radial
motion. Unlike electromagnetic waves, gravitational wave polarizations are just 45◦ apart.

Gravitational wave detection can be easily understood from the symmetry between sources
and detectors—time reversal invariance. A gravitational wave will distort a ring of test masses
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Figure 1. (a) The lowest order non-spherical deformation of a ring: the diagonal masses are not
moved. (b) The deformation of a ring of test particles in one cycle of a gravitational wave field.

in exactly the same way that the distortion of a ring of test masses creates gravitational waves.
The non-spherical deformation pattern we just observed is exactly like the tidal deformation
of the Earth created by the gravity gradient due to the Moon. A gravitational wave is indeed a
wave of time-varying gravity gradient. The amplitude of a gravitational wave is measured by
the relative change in spacing between masses. That is, the wave amplitude, usually denoted
h, is given by 	L/L, where L is the equilibrium spacing and 	L is the change of spacing
of two test masses. Whereas electromagnetic luminosity depends on the square of the second
time derivative of the electric dipole moment, the gravitational wave luminosity is proportional
to the square of the third time derivative of the mass quadrupole moment. The extra derivative
arises because gravitational wave generation is associated with the differential acceleration of
masses.

The above deformation patterns also apply to solid or fluid bodies. The rigidity of normal
matter is so low compared with that of spacetime that the stiffness of the matter is utterly
negligible. Considering the deformations of figure 1(a) applying to a solid sphere, such as
the Earth, it also follows that the 45◦ points must involve circumferential motions since the
deformation shown acts to transfer matter from the ‘equator’ to the poles in the same way that
the lunar tides act on the Earth.
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Figure 2. A rotating dumbbell or a binary star system, viewed edge-on, has a maximal variation
of quadrupole moment.
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Figure 3. Gravitational wave field force lines. (a) ‘+’ polarization; (b) ‘×’ polarization.

The gravitational wave has an effective force field determined by the displacement vectors
of the test masses. The force field is discussed further below, and is shown in figure 3. The force
field indicates that detectors can be designed to couple to gravity waves in several different
ways. They may detect straight linear strains, orthogonal strains, or circumferential strains.

The weak coupling of gravitational waves to matter is a consequence of the enormous
elastic stiffness of spacetime. If the elastic stiffness of spacetime were infinite (Newtonian
physics) the coupling would be zero. In general relativity the generation of gravitational
waves is given quantitatively by combining the third time derivative of the quadrupole moment
described above, with the appropriate coupling constant. The latter can only depend on the
constants G and c (for classical waves) and by dimensional analysis this constant must have
the form G/c5. The luminosity of a source is given by

LG ∼ G

c5

(
d3D

dt3

)2

. (1.2)

Except for a numerical factor, this is the Einstein quadrupole formula [3]. There are two
useful formulae one can derive from equation (1.2). The first is the formula for a hypothetical
terrestrial source or binary star system. The second is for an interacting black hole system.
The terrestrial source might be a pair of oscillating masses joined with a spring. Ideally, the
spacing of the masses should change from zero to L. This is achieved in the edge on view of a
rotating dumbbell or binary star system in a circular orbit as shown in figure 2. Viewed edge-on
the masses appear to move in and out periodically twice per rotation cycle. The quadrupole
moment for two masses distance x apart is Mx2. If the motion is sinusoidal at an angular
frequency of ω, the square of the third time derivative is ∼M2L4ω6. Thus the gravitational
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wave luminosity of such a system is

Lc ∼ G

c5
M2L4ω6. (1.3)

This equation applied to any natural or artificial source in our solar system gives a depressingly
small luminosity, due to the extraordinarily small value of G/c5. However, the situation is
different in an astrophysical context.

Suppose that the system is a similar binary system, except that it consists of a pair of
gravitationally bound masses, of size such that their escape velocity approaches c and their
radius is near to the Schwartzchild radius: that is, a pair of black holes. In this case we can
express L in units of the Schwartzchild radius, using rs = 2GM/c2 and replace Lω with
velocity expressed in light speed units. Then it follows immediately that

LG ∼ c5

G

(v
c

)6 ( rs
r

)2
. (1.4)

The remarkable difference between equation (1.3) and equation (1.4) expresses the difference
between the physics of normal matter and black holes. Equation (1.3) is scaled by the tiny
factor G/c5, while equation (1.4) is scaled by its enormous reciprocal. Normal matter in
our solar system creates negligible curvature of spacetime. A black hole creates an extreme
distortion of spacetime. Hence normal matter sources are intrinsically extremely weak, while
very large amplitude waves are created in events such as the coalescence of a pair of black
holes (for which we would expect v ∼ c when rs ∼ r). The factor c5/G is roughly the
total electromagnetic luminosity of the universe. This is the upper limit to the gravitational
wave luminosity of black hole systems. In reality, equation (1.4) does not take into account
the gravitational redshift effects and other spacetime curvature effects which act to reduce the
maximum luminosity. However, to order of magnitude, equation (1.4) indicates the extreme
luminosity of gravitational waves that can be expected in short bursts when gravitationally
collapsed systems with strong gravity, such as black holes (escape velocity = c) and neutron
stars (escape velocity ∼0.1c), are involved.

As we saw above, a gravitational wave is a wave of gravity gradient which causes relative
displacements, or strains between test masses. The detection of gravitational waves requires
the detection of small strain amplitudes. We should now consider the typical size of such strain
amplitudes. One can very crudely estimate this by scaling the amplitude of the gravitational
wave relative to the extreme amplitude at the point of coalescence of two masses to form
a black hole. At the point of black hole formation spacetime curvature is very large. For
example, the deflection of light for a light beam passing near to the event horizon can approach
a complete orbit of a black hole. At the point of generation the dynamic curvature of space
that will become the outgoing gravitational wave is unlikely to be able to exceed the static
curvature represented by the maximal deflections of light past a black hole. The strain 	L/L

represented by such deflections can be estimated from the difference in light travel time for the
deflected path around the black hole (say half an orbit) and the direct path between the same
points in the absence of the black hole. For a half-orbit (in Euclidean geometry) the circular
path is π/2 longer than the direct path, so roughly 	L ∼ L, and the maximum possible strain
amplitude is ∼unity. But by the inverse square law, the amplitude of the wave reduces as 1/r .
(The energy density which is proportional to the square of the amplitude reduces as 1/r2.) So
for such a black hole source we can give the strain amplitude at distance r as simply h ∼ rs/r .
For more realistic sources only a fraction of the total energy will participate in quadrupole
motion. Thus it is more reasonable to include an efficiency factor ε which characterizes the
fraction of the total system rest mass which can convert to gravitational waves. In this case we
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can write

h ∼ ε1/2 rs

r
. (1.5)

Since the Schwartzchild radius of a solar mass is a few kilometres, the maximum strain
amplitude that can be expected from any stellar source is numerically equal to the reciprocal
of its distance in kilometres. Because rs is linearly proportional to the mass, gravitational
wave amplitudes from very high mass sources, such as colliding 109 solar mass black holes in
galactic nuclei, will be of correspondingly larger amplitude. Putting in numbers, equation (1.5)
gives h ∼ 10−16 for 10 solar masses and 100% efficiency at the galactic centre, and h ∼ 10−13

for 3 billion solar masses at 3 Gpc (towards the edge of the visible universe).
Clearly these maximal numbers are very small. It might seem that the supermassive

black hole sources might be much more detectable than the stellar mass source. The strain
amplitude in this case corresponds to the detection of a motion equal to the size of an atomic
nucleus on a one-metre baseline, or one metre between here and Neptune. In fact the detection
of such small strains on Earth is probably impossible, because the frequency of the waves
from supermassive black hole sources must always be very low. The peak frequency, or its
reciprocal, the burst duration, can be estimated from the time the binary black hole system
takes to complete its final orbit before coalescence. Its value is about 10 kHz for one solar
mass, reducing inversely as the mass. Thus, the peak frequency will be about 1 kHz for
the above galactic centre source, and 3 × 10−6 Hz for the distant massive black holes. The
latter frequency will be reduced towards 10−6 Hz by cosmological redshifts. At such low
frequencies environmental effects, and particularly gravity gradients associated with tides and
weather variations in the surrounding environment, create perturbations which greatly exceed
the desired signal. The only known means around this obstacle is by using drag-free satellite
technology to create very stable free-floating masses in space, and laser interferometry between
them. In this case detection does look relatively straightforward, though expensive, since it
requires several widely spaced spacecraft. For frequencies above 1 Hz, terrestrial detection
appears to be possible, limited only by fundamental quantum measurement limits.

For even lower frequencies than 10−6 Hz it is possible that radio pulsars can replace man-
made spacecraft in detection systems. The pulsar ideally provides a perfect monochromatic
timing signal. The radio beams from the pulsar are traversed by incoming gravitational waves.
If several pulsars are observed in the same part of the sky, gravitational wave signals would
appear as correlated arrival time variations of pulses from pulsars in different directions. In
this case it is more convenient to consider the gravitational wave acting not on the pulsar itself,
but on spacetime geometry near to the Earth through which the pulsar signal propagates.

Today detectors are in long-term operation which exceed the 10−16 sensitivity indicated
above by more than two orders of magnitude. Advanced detectors of two types are under
development which should achieve another three orders of magnitude in amplitude sensitivity.

For 50 years after Einstein predicted gravitational waves [3] physicists considered them
to be of academic interest only. It was not until after the pioneering work of Joseph Weber [4],
and his reported discoveries [5,6] that a growing number of physicists around the world started
to develop different types of antennas to search for gravitational waves. Since Weber’s first
reports, which were never confirmed, the improvement in detectors has been quite remarkable.
Relating them to optical telescopes, the improvement achieved so far is equivalent to the step
from a 3 cm diameter optical telescope to a 3 m diameter instrument. In the next decade it
is hoped that the improvement will be equivalent to a step up in size from 3 m to 3 km. At
this sensitivity gravitational wave detection is practically certain, and the field of gravitational
astronomy will be able to slowly map and explore the new spectrum, and the objects that it
reveals.
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In the following sections we will discuss gravitational wave sources in more detail before
going on to discuss detectors, first in the form of a general overview, and then with specific
emphasis on existing ground-based detectors and their future prospects.

1.3. Gravitational waves in general relativity

Here we give a brief summary of the mathematical basis for gravitational waves. For further
details on the theory of gravitational waves, readers are referred to [7–12].

The geometry of spacetime can be expressed by the metric tensor gαβ which connects the
spacetime coordinate dxα(α, β = 1, 2, 3, 4) to the spacetime interval ds by way of the relation

ds2 = gαβ dxα dxβ. (1.6)

In reality, gravitational waves in the vicinity of the Earth will always be very weak. The
background curvature can be ignored and the background metric can be approximated as that
of the Minkowski flat metric η. An approximation of the gravitational wave field can then be
expressed in the form [7]

gαβ = ηαβ + hαβ, (1.7)

where ηαβ is the metric of the flat background, and |hαβ | � 1 is the perturbation on this
background. If there is no stress-energy source term in Einstein’s field equation, i.e. T = 0 in
equation (1.1), we are left with the weak field vacuum approximation to the Einstein equations.
To obtain an explicit statement of the metric perturbations h it is necessary to make a gauge
choice. The most useful gauge is the transverse traceless gauge in which the coordinates are
defined by the geodesics of freely falling test bodies. In this gauge, and in the weak field
limit discussed above, the equations of general relativity become a system of linear equations,
specifically a system of wave equations [7](

∇2 − 1

c2

∂2

∂t2

)
hαβ = 0. (1.8)

Equation (1.8) is a three-dimensional wave equation, telling us that gravitational waves travel
at the speed of light c. The gravitational wave curvature tensor h can be considered as the
gravitational wave field. The wave field is transverse and traceless, and for waves travelling in
the z-direction may be expressed as follows:

hαβ =




0 0 0 0
0 hxx hxy 0
0 hyx hyy 0
0 0 0 0


 . (1.9)

There is no z-component due to the transverse nature of the waves, and to be traceless h satisfies

hxx = −hyy. (1.10)

Because the Riemann tensor is symmetric, h also satisfies

hxy = hyx. (1.11)

The symmetry of hmeans that there are just two possible independent polarization states which
are usually denoted h+ and h×. In the case of sinusoidal gravitational waves we can express
these polarizations as

h+ = hxx = Re [A+e−iω(t−z/c)], (1.12)

h× = hxy = Re [A×e−iω(t−z/c)]. (1.13)

Here A+ and A× are the strain amplitudes of each polarization.
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We have already seen that a gravitational wave field moves masses in the same way that an
electromagnetic wave sets charged particles in motion. Each wave field exerts tidal forces on
objects through which it passes. The corresponding lines of force have a quadrupole pattern
as shown in figure 3. Figure 3(a) shows the force lines of the ‘+’ polarization and (b) shows
the ‘×’ polarization which is rotated 45◦ with respect to the ‘+’ state. These time-varying tidal
forces can deform an elastic body or change the distance between mass points in free space.
A ring of particles placed perpendicular to the wave propagation direction will be distorted as
we already saw in figure 1.

Einstein’s famous quadrupole formula describes the gravitational wave amplitude from a
source. Einstein derived his formula in a slow-motion weak field approximation, but Thorne [8]
emphasizes that the result is accurate as long as the reduced wavelength exceeds source size.
This condition applies to all but the most compact sources such as forming or coalescing black
holes. The latter are potentially the strongest and most detectable sources. It is unfortunate
that these are just the ones where the nonlinearity of general relativity, and in particular the
gravitational redshift of the outgoing gravitational waves due to the gravitational energy of the
spacetime curvature itself, makes the gravitational radiation amplitude extremely difficult to
estimate.

The quadrupole formula states that the gravitational wave amplitude h at a distanceR from
a source is proportional to the second time derivative of the transverse traceless projection of
the quadrupole moment evaluated at the retarded time t − r/c. That is

hjk = 2

r

G

c4

∂2

∂t2
[Djk(t − R/c)]T T , (j, k = 1, 2, 3) (1.14)

where [Djk(t − R/c)]T T is the transverse traceless projection of the quadrupole moment
evaluated at retarded time (t − R/c). The transverse traceless requirement relates to the
transverse nature of gravitational waves, and the lack of wave generation from spherically
symmetrical motions. For weak fields, for which gravitational self-energy is small (see
Damour [13]) D is given by the second moment of the source mass density ρ:

Djk =
∫

ρ(t)[xjxk − 1
3x

2δjk] d3x. (1.15)

In this equation the term with the Kronecker delta ensures that D is trace-free.
The total gravitational wave power is proportional to the square of the third time derivative

of the mass quadrupole moment [14]. In general, the total energy radiation rate LG is given
by the sum of the squares of all the projections of the quadrupole moment

LG = 1

5

G

c5

∑
jk

∣∣∣∣d3Djk

dt3

∣∣∣∣
2

. (1.16)

The very small universal constant

G

5c5
= 5.49 × 10−54 s J−1 (1.17)

sets the characteristic gravitational radiation power output.
The presence of the factor (G/c5) in equation (1.16) indicates that unless the

...

Djk involves
energy of astronomical proportions, the gravitational wave power will be extremely small. It is
easy to show that it is impossible to generate detectable gravitational waves on the laboratory
scale, even at extreme limits of known technology. We can only hope to observe gravitational
waves emitted by astrophysical sources.

It is useful, however, to consider a laboratory source simply as an application of
equations (1.15) and (1.16). Suppose the source consists of a pair of masses distance L apart,
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and joined by a spring to allow sinusoidal oscillation of their spacing at angular frequency ω.
From equation (1.15), D = ML2, and if L = L0 + a sin ωt , it follows that

D = ML2
0 + 2ML0a sin ωt + Ma2 sin2 ωt. (1.18)

From equation (1.18), taking the third time derivative, it follows that this source will produce
gravitational waves at the frequencies of ω and 2ω. If the amplitude a is small compared with
L0, the 2ω term is small and the gravitational wave luminosity is given by

LG = G

5c5
4M2L2

0a
2ω6. (1.19)

For any practical harmonic oscillator on Earth LG is infinitesimal. However, such mass
quadrupole oscillators have been created as sources of near-field dynamic gravity gradients
(not waves) for the purpose of calibrating gravitational wave detectors. Such systems has been
successfully used for low-frequency detectors tuned to the Crab pulsar [15] and also by the
Rome group to calibrate their resonant-bar detector and measure the inverse square law of
gravitation [16].

2. Sources of gravitational waves

2.1. Introduction

Astrophysics provides us with a variety of candidate systems which should be observable in
the spectrum of gravitational waves. However, it is important to remember that our powers of
prediction of new phenomena are poor, so any list of sources is almost certain to be incomplete.

Amongst stellar mass systems we expect detectable gravitational radiation from the
formation of black holes and neutron stars, and the coalescence of binary neutron stars and
final collapse of such binaries to form a black hole. We would expect not only discrete sources,
but also continuous stochastic backgrounds created from large numbers of discrete sources.
In our Galaxy the very large populations of binary stars create a stochastic background in the
10−2 to 10 Hz range. In the universe as a whole all of the above neutron star and black hole
formation events are likely to merge to form a continuous background in the audio frequency
part of the spectrum. This particular background provides an exciting opportunity to observe
the earliest epochs of Galaxy formation, and the birth and growth of the supermassive black
holes that appear to reside in the nuclei of many galaxies and quasars. We may also be able
to observe gravitational waves from the big bang, amplified during the inflationary era, and
possible signatures of cosmological phase transitions and topological defects such as cosmic
strings. These very earliest sources in the universe would constitute a probe of physics at
energy scales far beyond those accessible in particle accelerators and hence represent the best
opportunity we have to obtain experimental data from the era of inflation.

Back in our own Galaxy we would also expect to find many quasi-monochromatic sources
of gravitational waves such as individual binary star systems, including binary neutron stars as
they evolve towards coalescence, and various rotating neutron star systems such as millisecond
and x-ray pulsars.

Figure 16 shows the gravitational wave spectrum across nine decades. The spectrum
conveniently divides into a terrestrial detection band, above 1 Hz (generally within the audio
frequency band), mainly associated with stellar mass compact objects, and a space detection
band, from 10−6 to 10−1 Hz, where sources include both binary star systems in our Galaxy,
and cosmological sources associated with massive black hole interactions.
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2.2. Classification of sources

All the above sources can be naturally divided into three distinct classes, according to the
methods of data processing and signal extraction. The first class consists of catastrophic burst
sources such as the final coalescence of compact binary star systems, or the formation of
neutron stars and black holes in supernova events. The binary coalescence events can consist
of binary neutron stars, binary black holes, or neutron-star–black-hole binaries. The burst
signal consists of a very short single event, consisting of one or very few cycles, and hence is
characterized by a broad bandwidth, roughly determined by the reciprocal of the event duration.

The second class consists of narrow-band sources. These include the rotation of single
nonaxisymmetric stars, particularly pulsars and accreting neutron stars, as well as binary star
systems far from coalescence. All such systems are quasi-periodic because gravitational wave
energy loss must cause period evolution, and in general they are also periodically Doppler
shifted by binary motion and Earth’s orbital motion. Such sources are generally weaker than
the burst sources, but in principle they are always amenable to long-term integration to extract
signals from the noise. This requires accurate knowledge of the frequency modulations to
maintain a coherent integration. Assuming a white noise background and perfect knowledge
of the frequency evolution, the signal-to-noise ratio increases asN1/2 whereN is the number of
cycles. For narrow-band sources it may be possible to integrate for 108 s, compared with less
than 10 ms for a burst source. Thus, at 100 Hz, N can be 1010 allowing a 105-fold improvement
in signal-to-noise ratio.

The third class of sources are the stochastic backgrounds produced from the integrated
effects of many weak periodic sources in our Galaxy, or from a large population of burst
sources at very large distances, as well as the above-mentioned cosmological processes in the
early universe. Stochastic backgrounds are difficult to detect in a single detector because they
are practically indistinguishable from instrument noise. If the source was not isotropically
distributed (such as a population of binary stars towards the centre of our Galaxy), it might be
detectable from the variation of observed instrument noise as the detector orientation varied
on the rotating Earth. However, a much better way of detecting stochastic backgrounds is
by cross-correlating two nearby detectors. In this case the correlated stochastic signal will
integrate up in relation to the uncorrelated instrument noise (assuming both detectors to be
truly independent). In this case the signal-to-noise ratio increases as N1/4, where N is the
effective number of cycles, determined by the observation frequency. This technique allows a
300-fold improvement in signal-to-noise ratio in 108 s of integration, (compared again with a
10 ms burst source).

Binary neutron star systems can produce gravitational waves in all the three classes. First,
a large population of binary neutron stars in our Galaxy, with orbital periods in the range from
days to minutes, can produce a stochastic background of individually unresolvable sources
in our Galaxy in the frequency band ∼10−2–10−5 Hz. Nearby individual systems which are
far from binary coalescence could produce detectable nearly monochromatic waves at any
frequency up to 0.1 Hz. In addition to the binary orbit, the individual rotation of the stars
themselves (if they are nonaxisymmetric), will also give rise to quasi-periodic gravitational
waves. For example, the spin-down of a millisecond pulsar can be entirely due to gravitational
wave emission if just 10−7M	 is located in a nonaxisymmetric configuration on the star [17].
As the binary evolves and radiates away gravitational potential energy, it will gradually spiral
inwards. As a result, the frequency of the gravitational wave signal will increase with time. At
the same time, any periodic waves from the rotation of the individual stars will cause loss of
rotational kinetic energy, so that this frequency will decrease with time. Eventually the stars
will coalesce, resulting in a short intense burst of gravitational waves.
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Figure 4. Predicted gravitational waveform from the inspiral of 10M	 black hole binaries [18]. To
show the individual cycles near coalescence, the orbital frequency in this graph has been artificially
reduced.

Figure 4 is a predicted gravitational waveform produced by the inspiral of a binary made
of two black holes [18]. During the final minutes of a coalescing binary the waveform is highly
distinctive.

The time evolution of the frequency of two 1.4M	 neutron stars in a binary system is
shown in figure 5. Over a period of about 1000 s the frequency rises from about 10 Hz to
1 kHz as the neutron stars spiral together. This part of the merger begins when the stars are
within about 1000 km of each other. The orbital velocity is ∼0.1c. Signal detection can
make use of exactly the same principles used to extract narrow-band signals due to the fact
that the time evolution of the signal frequency and phase is predictable. Matched filtering,
based on the existence of a family of accurately predictable waveforms, can allow integration
over all of the observed signal cycles. A terrestrial detector may be able to observe more
than 1000 gravitational wave cycles from a neutron star binary. The total number of cycles
observable increases strongly as the lower cut of frequency is reduced. This provides a strong
incentive for creating detectors at the lowest possible frequency. For 1000 observable cycles,
the signal-to-noise ratio is improved by the square root of this number, or about 30.

Exactly the same concepts may be applied to supermassive black hole binaries. The signal
frequency decreases inversely with the black hole mass. Thus a pair of 108 solar mass black
holes would produce a chirp of gravitational waves rising from one cycle per year to a cycle
per day over a period of 1011 s! This is much too long to observe the entire event, so in
reality one could only expect to observe rather few cycles. However, since there appear to be
a large population of quasars and galaxies containing massive black holes, as well as a large
population of interacting galaxies, such events may not be uncommon, and may give rise to
numerous strongly detectable sources at very low frequencies.
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Figure 5. The frequency evolution for coalescence of a binary system consisting of a pair of 1.4M	
neutron stars.

2.3. Supernovae

Supernovae have long been considered a primary source of gravitational wave bursts.
Unfortunately, astrophysics gives us few clues to their efficiency in producing gravitational
waves during core collapse. Indeed, the true nature of the various supernova classes is still
uncertain. In particular, it is uncertain whether a type I(a) supernova occurs through detonation
or collapse in a solitary or binary white dwarf system. Some supernovae, such as the Crab
supernova of the year 1054AD, do create neutron stars, but others such as supernova 1987A
have failed to yield an identifiable neutron star. It is also unknown whether supernovae can
directly create black holes.

The possibility of strong gravitational radiation emission only occurs if the event consists
of gravitational collapse to a neutron star or black hole. Even in this case the efficiency of
gravitational radiation emission is contentious. (The efficiency ε is defined as the fraction of the
rest mass of the system concerned converted to gravitational waves.) Estimates of gravitational
wave emission have been based on two quite independent approaches. The first follows the
gravitational collapse of a system in two or three dimensions, considering as much of the
physics as possible—magnetohydrodynamics, neutrino physics, and general relativity—in an
attempt to deduce the time dependence of the quadrupole moment and hence the conversion
efficiency to gravitational waves.

The second approach assumes that the collapse has occurred and follows the time evolution
of a newly formed hot and rapidly rotating neutron star. Any phenomenon that creates non-
axial symmetry will convert rotational kinetic energy into gravitational waves. In addition,
convective motions, vibrational modes of oscillation of the star, and nonaxisymmetric emission
of neutrinos can convert into gravitational wave emission. To date, many core collapse
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calculations have predicted rather low efficiency—say 10−6 to 10−10 [19, 20], while the
post-collapse evolution calculations have predicted far higher efficiencies, of order 10−3 to
10−4. We will discuss some of these results below. However, it must be emphasized that
all the models used so far are deficient due to uncertainty regarding the equation of state
and the viscosity and the difficulty in constructing a full 3D numerical general relativistic
hydrodynamical code which must also include magnetic and neutrino phenomena [21]. Due
to the enormous difficulties involved it seems most unlikely that theory alone will be able to
answer the primary observational questions on the efficiency and the waveforms generated in
supernovae. However, almost all models show an unsurprising common feature: the efficiency
of gravitational wave production depends on the angular momentum of the progenitor star.

Lai and Shapiro [22] have considered the time evolution of a new-born rapidly rotating
neutron star. They have shown that the new-born star is driven by gravitational radiation
into a non-asymmetric configuration due to a bar-mode instability. A unique gravitational
wave signature ensues: the wave frequency sweeps rapidly downward from a few hundred
hertz towards zero, while the wave amplitude increases rapidly from zero at the onset of the
instability to a maximum at a few hundred hertz, and then reduces steadily as the frequency
falls. Additional gravitational wave signals can also arise in rapidly rotating neutron stars. The
rotating stars are modelled as nonaxisymmetric ellipsoids. A secularly unstable Maclaurin
spheroid [23] will evolve away from the axisymmetric configuration due to gravitational
radiation, and proceed ultimately toward a Dedekind ellipsoid [23].

According to Lai and Shapiro the characteristic amplitude of a gravitational wave during
the evolution from a Maclaurin spheroid to a Dedekind ellipsoid is given (within 20% accuracy)
by

hc ∼ 1.8 × 1022

(
10 Mpc

R

)(
M

10M	

)3/4 ( r0

10 km

)
f 1/2 (2.1)

where M and r0 are the mass and radius of the star, respectively. Here hc refers to the effective
amplitude which takes into account the number of cycles that the signal is within the detector
bandwidth (see below).

At high frequency, gravitational radiation can be expected from the evolution of a Jacobi-
like ellipsoid [23] toward a Maclaurin spheroid. This Maclaurin spheroid can evolve further
to a Dedekind ellipsoid. The characteristic amplitude during the Jacobi-like evolution can be
fitted to the form

h ∼ 2.7 × 10−20

(
10 Mpc

R

)(
M

1.4M	

)3/4 ( r0

10 km

)
f −1/5. (2.2)

Houser et al [24] have modelled the gravitational radiation from a bar-mode instability
in rapidly rotating neutron stars. Their calculation using Newtonian gravity and without
consideration of further collapse to a black hole, nor other hydrodynamic instabilities, gives a
gravitational radiation conversion efficiency of ε ∼ 0.1%.

The above examples seem to indicate that supernovae which produce rapidly rotating
neutron stars may be reasonably efficient sources of gravitational radiation. The nature of the
production process is likely to be through shape instabilities such as those discussed, but it
is unlikely that predictions of waveform are accurate. Large amounts of angular momentum
may be radiated away in gravitational waves but if the duration and frequency evolution are
unknown this presents an additional complication when it comes to trying to dig a signal out
of the detector noise. The fraction of supernovae for which high gravitational wave emission
occurs is unknown. In the following discussion where we need to use a numerical value, we
shall adopt an efficiency of 0.1%. However, the uncertainty of this number must be recalled.
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To start with, it is useful to note that a supernova of 0.1% efficiency produces a characteristic
strain amplitude of ∼10−18 at 10 kpc (within our Galaxy), and 10−21 at 10 Mpc (halfway to
the Virgo Cluster of galaxies). The chance of detecting gravitational wave bursts obviously
depends strongly on the rate of the burst events. Due to the isolation of the Milky Way Galaxy,
and to the large distances required to substantially increase the size of the target population,
the amplitude distribution of bursts is extremely non-uniform. Strong events from our Galaxy
are almost certainly rare, and to increase the event rate substantially one needs to be able to
detect events in the Virgo Cluster. Thus, to have a chance of detecting several events per year,
the sensitivity must be able to detect characteristic amplitudes of less than 10−21.

2.4. Rough guide to signal amplitudes

It is useful to have some formulae with which to make rough estimates of signal amplitudes.
For a continuous gravitational wave of frequency fg , the strain amplitude h is related to the
power density w through the relation [25, 26]

w ≈ πc3

4G
f 2
g 〈h2〉 = 3.18 × 1035f 2

g 〈h2〉 Wm2. (2.3)

where h2 = h2
+ + h2

×. Because of the large numerical constant in equation (2.3) the amplitude
h is extremely small even for a fairly large power density. For a gravitational wave with strain
amplitude of h ∼ 10−21 (typical of possible signals from the Virgo Cluster) at a frequency
of 1 kHz, the flux would be 0.3 W m−2, which is about 1020 times bigger than typical radio
astrophysical energy fluxes. The strain amplitude can be written as

h = 4πR2w ∼
(

G

π2c3

)1/2
L1/2

fgR
∼ 1.7 × 1022

(
1 kHz

fg

)(
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R
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L

1046 W

)1/2

. (2.4)

As we saw above, the modelling of gravitational wave forms in gravitational collapse is
extremely uncertain. However, for a gravitational wave burst event, the characteristic time
scale of the event τg , and the total gravitational energy released Eg , provide a reasonable basis
for estimating source parameters. The energy radiation rate L is related to τg and Eg by

L ∼ Eg/τg. (2.5)

Burst sources naturally have a broadband spectral distribution. The characteristic frequency
of a burst of duration τg is roughly

fg = 1

2πτg
. (2.6)

This frequency roughly defines the peak frequency in the spectrum. For a roughly Gaussian
burst, the width of the spectrum 	f is of the same order of fg . The strain amplitude can then
be written as [8]

h ∼
(

G

π2c3

)1/2
(Eg/τg)

1/2

fgR
∼ 5.8 × 10−20

(
Eg

M	c2

)1/2 (1 kHz

fg

)1/2 (10 Mpc

R

)
. (2.7)

If a gravitational collapse forms a black hole, we can be more specific in estimating the event
duration. Defining a characteristic time τ to be the time for the gravitational wave to travel
across the region of strong gravitation ds , which is assumed to be about twice the gravitational
radius 2GM/c2, and assuming τg is approximately the same as the characteristic time τ , we
have

τ ∼ 1

2πfg

∼ ds

c
∼ 4GM

c3
. (2.8)
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For a system of several solar masses, this corresponds to a frequency of a few kHz. Putting
equation (2.8) into equation (2.7) and using Eg = Mc2, the strain amplitude of a burst event
then becomes [8]

h ∼ 1

2π

c

fgR
ε1/2 ∼ 5 × 10−21

(
1 kHz

fg

)(
10 Mpc

R

)( ε

10−3

)1/2
. (2.9)

2.5. Neutron star coalescence sources

The modelling of gravitational wave emission from neutron star coalescence has been studied
extensively. For most of their evolution, the neutron stars can be considered as point masses,
and much of their evolution is well described by the quadrupole formula equations (1.15)
and (1.16). The waveform as shown in figure 4 is quite distinctive and amenable to the method
of matched filtering for signal detection. A numerical template is used, defined by the set
of possible waveforms. When this is cross-correlated with the data and correctly matched in
phase, it will produce a large positive correlation. The signal-to-noise ratio is substantially
enhanced by this means. The apparent signal enhancement achievable is expressed in terms of
the characteristic amplitude hc. The characteristic amplitude represents the effective amplitude
detected after optimal filtering of the waveform. Roughly, hc includes an enhancement of the
signal by the square root of the number of cycles within the spectral band of interest and is
roughly a factor of 30 for a neutron star coalescence detected by a laser interferometer detector,
although this increases strongly if the waveform is detectable at much lower frequencies where
the frequency evolution is slow. For example, the number of observable cycles increases almost
50 times if the detector is able to observe down to 10 Hz instead of 100 Hz. This means that
we can only roughly estimate the size of the detectable signal, as it depends on the detailed
frequency response of the detector.

Thorne [18] gives the characteristic strain amplitude of the waves from inspiralling binaries
as

h ∼ 0.237
µ1/2M1/3

r0f
1/6
c

= 4.1 × 10−22

(
µ

M	

)1/2 (
M

M	

)1/3 (100 Mpc

R

)(
100 Hz

fc

)1/6

.

(2.10)

Here M and µ are the total and reduced masses: M = M1 + M2, µ = M1M2/M , and fc

is roughly the frequency of maximum detector sensitivity.
Lai and Shapiro [22, 27] have modelled neutron star coalescence taking into account the

dissipative hydrodynamics of the systems. They showed that a hydrodynamical instability
arises through tidal interactions, which significantly accelerates the coalescence at small
separations. This leads to a reduction in the coalescence time, and an increase in h compared
with a non-viscous system, as shown in figure 6.

The rate of coalescence events is such that the chance of an event in our Galaxy is negligible.
Based on the statistics of observed single and binary neutron star systems and on the supernovae
rate in external galaxies [28, 29], it is estimated that the merger rate of binary neutron stars in
our Galaxy is between 10−6 yr−1 and 10−4 yr−1. For galaxies at R � 200 Mpc a lower limit of
this rate is roughly 1–3 yr−1. However, Tutukov et al [30] and Yamaoka et al [31] have shown
that the above merger rate, calculated by means of statistics of observed binaries, is probably
wrong because of the short lifetimes of most new-born neutron star binaries. From models
based on stellar evolution, they estimate a neutron star binary merger rate up to 100 yr−1

in galaxies out to 200 Mpc (assuming a Hubble period of THubble = 1.5 × 1010 yr, which
corresponds to a Hubble constant of H0 ∼ 66 km s−1 Mpc−1).
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Figure 6. Waveform from neutron star binary
coalescence [22]. The thick solid curve
corresponds to zero viscosity. The thin solid curve
assumes a mass-averaged shear kinetic viscosity
v = 0.5(M/r0)

1/2, where M and r0 are the mass
and the radius of the star respectively. The dotted
curve is the case for two point masses (i.e. as
figure 4).

The neutron star coalescence signals amplitude and waveform can be predicted with
reasonable confidence, so that such sources are certain to be detected when sufficient sensitivity
is achieved. The burst sources are also very promising for advanced gravitational wave
detectors [32–34], but suffer from uncertainty in the value of ε. From equation (2.9), the
gravitational wave strain amplitude for burst events at 200 Mpc is comparable to that from
binary coalescence if ε ∼ 0.01. In this case, the event rate will be much greater.

From the estimation of the stellar population with distance, the merger rate would be
∼0.1 yr−1 for a distance of R ∼ 20 Mpc, the typical distance to the Virgo Cluster. The burst
rate by contrast could be 30 yr−1 [35].

2.6. Low-frequency sources

As discussed above, very intense low-frequency gravitational wave sources can be expected
from gravitational waves associated with the merger of massive black holes. Rees [36,37] has
argued that massive black holes are inevitable in the cores of young galaxies. There is very
strong evidence that such black holes exist in many objects, with masses ranging from 106 to
109 solar masses. Galactic mergers are likely to give rise to such black hole mergers so one
estimate of the rate of powerful gravity wave events can be obtained by estimating the rate of
galactic mergers. For large galaxies with central black holes, Haehnelt [38] has estimated this
rate at about one per century. This does not include the far more frequent mergers of smaller
galaxies for which central black holes have not been confirmed. Vecchio [39] has shown that
for the black hole merger rate to reach one per year practically all galaxies out to z = 1 would
have to contribute black holes to feed the merger process. The latter is not such a strong
constraint, however, since the horizon for detecting black hole mergers could be far beyond
z = 1. For example, if one considers mergers to z = 3, only a few per cent of galaxies are
required to have a central black hole to achieve one event per year.

Potentially detectable low-frequency gravitational waves can also be created by low-mass
objects orbiting massive black holes. The low-mass objects could be smaller black holes or
neutron stars, white dwarfs or even main sequence stars. Such sources could exist in the
nucleus of our own Galaxy, and could in principle be detectable well beyond the Virgo Cluster
(which multiplies up the number of potential sources by several thousand).

The basic physics behind gravity wave emission from sources of this type relates to the
question of whether the gravity gradient from the central black hole is sufficient to tidally disrupt
the incoming object. Clearly, main sequence stars will be most easily disrupted. Only if the
central black hole is capable of swallowing whole the incoming object, will the gravitational
radiation be strong. Otherwise the tidally disrupted star will form an accretion disc and slowly
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accrete the material with negligible gravitational wave emission. To avoid tidal disruption, the
Schwartzchild radius of the black hole must be large compared with the radius of the infalling
object. Roughly, the central black hole must be 107–108 solar masses for main sequence stars,
104 solar masses for white dwarfs, and 10 solar masses for neutron stars.

Sigurdsson [40] has estimated the rate of capture of stellar mass black holes by massive
black holes in galactic nuclei. The gravitational potential of the central black hole creates
a cusp-like stellar density profile. It is difficult to estimate the space density of objects in
the central cusp. It depends on star formation in the central high-density region of galaxies.
However, the population in the cusp will never achieve dynamic equilibrium because stars
approaching too close to the central black hole will be lost into the hole. Sigurdsson estimates
the rate of black hole capture by a central object as 10−8 per year, meaning that a realistic
detectable rate (one per year) requires observations to a range of the order of 3 Gpc. If the high
densities in galactic nuclei favour higher mass star formation the event rate could increase by
an order of magnitude.

2.7. Gravitational waves from binary systems

Short-period binary systems can create interesting amplitudes of gravitational waves in the
10−1–10−5 Hz range. Such binaries exist in several classes. One of the most definite classes
consist of the W Ursa Majoris binaries (WUMas), which are contact binary stars, with orbital
periods of hours. They are generally low-mass systems. About one star in 150 with mass
>0.6M	 is a contact binary [41]. Lower mass binaries are difficult to detect: there could be
an equal population of such systems with even shorter orbital periods.

A second important class of short-period binary stars are the cataclysmic variables,
consisting of an interacting main sequence and white dwarf binary. Cataclysmic variables
have orbital periods in the range 1000 s to one day: the shortest-period systems are probably
white-dwarf–white-dwarf systems.

Neutron star binaries occur in various forms, from the NS–NS binaries such as the Hulse–
Taylor pulsar PSR 1913 + 16, to rather more common systems in which neutron stars have
white dwarf or main sequence star companions. The latter often occur as interacting binaries—
low-mass or high-mass x-ray binaries, in which x-ray emission occurs due to mass transfer on
to the neutron star.

Verbunt [42] has summarized the density and strain amplitude expected from the short-
period binary star systems. Table 1 below is based on his review. The table shows the rough
number density and mass parameters, and the distances of typical sources. Most produce
gravitational waves ∼10−3–10−4 Hz, at an amplitude ∼10−20–10−22. There is clearly an
abundance of sources in the categories of nearby sources (<100 pc), such that the total
population creates a stochastic background of gravitational wave noise.

Several x-ray binary systems have been shown to contain neutron stars spinning in the
range 250–350 Hz. It is suggested that their spin rate is determined by the balance between the
mass accretion which provides a source of energy and angular momentum, and gravitational
wave emission which is the dominant energy sink. Emission could occur by a variety of
symmetry breaking instabilities. A specific suggestion is the so called r-mode instability, in
which rotational fluid flow patterns are induced in the neutron star [43].

Stellar evolution studies suggest that globular clusters are a breeding ground for close-
spaced binary black holes [44]. It has been recently suggested that these binaries get ejected
from globular clusters by three-body interactions, creating a halo population of binaries which
will coalesce in less than a Hubble time. Such binaries might coalesce without electromagnetic
signature, and could have a sufficiently large population that they could be detected at a
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Table 1. Binary sources of low frequency gravitational waves. The table shows the rough galactic
density of each source, the distance within which sources are expected, the typical mass of each
binary component, and the typical frequency and strain amplitude from the nearest sources.

Type Density/number d (pc) M/M	 m/M	 log f (s−1) logh

WUMa (0.3–0.6M	) 2 × 10−4 pc−3 15 0.6 0.3 −4.0 −20.4
WUMa (0.1–0.3M	) 2 × 10−4 pc−3 15 0.3 0.1 −3.7 −20.7
Cataclysmic variables 10−5 pc−3 45 0.3 0.6 −3.7 −20.7
Double degenerates (AM CVn) 100 0.04 0.6 −2.7 −21.2
Low-mass x-ray binaries (Pb < 2 × 10−4 s) 30 1 000 0.4 1.4 −3.8 −21.7
Low-mass binary pulsars (PSR 2051-08) 1 300 0.03 1.4 −3.8 −21.7
High-mass x-ray binaries (Cyg X-3) 1 10 000 4.0 1.4 −3.9 −21.9
NS–NS binary pulsars (1913 + 16) <10−5 500 1.4 1.4 −3.7 −20.8
Binaries in globular clusters (4U1820-30) 8 100 0.06 1.4 −2.5 −22.3

reasonable rate at h ∼ 10−21.
Gamma ray bursts which emit energy comparable to a solar mass at cosmological distances

could be due to the formation of black holes, or to neutron star binary coalescence, or to the
coalescence of neutron-star–black-hole binaries. Except in the case of spherically symmetrical
black hole formation, these mechanisms should all include strong gravitational wave bursts.
Searches have failed to find correlations between bursts and existing detectors, but this is not
unexpected as sensitivity is still not high enough.

Neutron star black hole coalescences, whether or not they are associated with gamma
bursts, can allow neutron star structure and microphysics to be probed because the break point
in the coalescence waveform is set by the tidal disruption of the neutron star. This depends
strongly on the neutron star radius and equation of state.

2.8. Stochastic background from the era of early star formation

We now consider the effects of supernovae and neutron star births at cosmological distances.
In this case, we are extrapolating from a radius of 10 Mpc to a radius of several Gpc. For
example, we consider supernovae from galaxies at redshift z = 2. Such galaxies are much
older than massive stellar lifetimes, and the rate of supernovae in such systems is generally
thought to be 10–100 times greater than supernovae in contemporary galaxies [45]. This is
supported by observations by Cowie et al [46] which indicate a fourfold enhancement in faint
blue galaxies at z � 1. At greater distances, millimetre wavelength studies of the Hubble deep
field region show the presence very-high-luminosity objects consistent with dust-enshrouded
galaxies at z ∼ 2–4. Observations indicate that star formation is occurring at rates ∼50 times
that in the present epoch [47]. The significance of these increased star formation rates, and
hence increased supernova rates, is that it leads to the possibility that the gravitational waves
from supernovae create a nearly continuous stochastic background.

First consider a simple case. Suppose that all supernovae have a gravitational wave burst
duration τ , and a mean rate of occurrence within some horizon distance (say 3 Gpc), of R

bursts per second. Then the mean duty cycle D of supernova bursts is given by D = Rτ . If
τ ∼ 10−3 s, then D reaches unity when R reaches 3 × 1010 y−1, or 103 s−1. When D reaches
unity the supernova bursts create an effectively continuous stochastic background. To make an
accurate determination of the supernova stochastic background, one needs to take into account
both evolutionary effects and cosmological effects. If every population I (second-generation)
star was the result of a single prior supernova, then there would need to have been ∼1021

supernovae to create the observed population of second-generation stars. This corresponds
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Figure 7. Duty cycle versus strain amplitude for supernova-generated gravitational radiation (with
an initial Gaussian burst of star formation at z = 2) [49].

to an average rate Excedrin 1000 supernovae s−1. Redshifts both stretch the pulses and the
mean time between bursts. The luminosity distance in non-Euclidean geometry changes the
observed amplitude of each burst.

A preliminary analysis in flat spacetime with assumed star formation rates showed that the
event rate could be as high as 104 s−1 [48]. Burman et al [49] refined the predictions of [48]
using various predictions for star formation rates to determine the duty cycle of short bursts of
gravitational waves from supernovae within the observable universe for various cosmological
models. Ferrari et al have separately considered supernovae [50] and gravitational waves from
young neuron stars [51]. They obtained event rates ∼20 s−1.

Figure 7 gives a typical result [49]. This result uses a Gaussian burst of star formation
about z = 2. It shows the burst amplitude versus duty cycle for supernovae assumed to have
an amplitude h0 = 10−22 at 10 Mpc. The background can only be considered a true stochastic
background as D tends to unity: for this model this occurs at h ∼ 10−25. Most of this signal
is due to events occurring during the initial burst of star formation. The amplitude of this
stochastic background will be characteristic of the more distant sources at z = 2.

Like all stochastic backgrounds, the supernova background can in principle be detected by
cross-correlation of signals between nearby detectors (less than half a wavelength separation:
for τ ∼ 10−3 s, they should be less than 100 km apart) [52]. As discussed above, the signal-
to-noise ratio is increased as the 1

4 power of the effective measurement time defined by the
cross-correlation integration time. For 107 s, integration at 1 kHz, this represents a 300-fold
improvement. Thus, the combined effects of all supernovae is to create a signal which can be
detected at a signal-to-noise ratio comparable to that of an individual supernova at 20–30 Mpc.
Thus, a detector capable of detection extragalactic supernovae can, with cross-correlation,
detect a stochastic background produced at 30 times greater distance.
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There are other aspects of the supernova stochastic background which are worth
mentioning. Its spectrum represents the average spectrum over all supernovae, but it will be
reddened according to the contribution of high-redshift supernovae. The duty cycle is clearly
amplitude dependent. Nearer sources will create less-frequent, larger-amplitude bursts. At
low duty cycle the background will be like popcorn noise, while for D > 1, it will approximate
Gaussian noise. There is an important difference in this regard. The presence of a popcorn
noise component [53] means that unlike true white noise, the individual short bursts create
broadband intensity correlations which might allow more powerful digging into the noise. For
example, the broadband correlations might allow the background to be detected as spectral
intensity correlations within a single detector. This might be combined with cross-correlation
between two detectors to dig still deeper into the noise. Further work in this area is badly
needed.

The energy density of the supernovae background 1SN , expressed as a fraction of closure
density, is given by

1SN = 1fsfSN ε̄ (2.11)

where 1 is the usual fraction of closure density for the universe as a whole, fS is the fraction
of this matter which forms into stars in a Hubble time, fSN is the mass fraction which takes
part in supernova events in a Hubble time, and ε̄ the mean gravity wave conversion efficiency
for supernovae. It is possible that 1SN could be in the range 10−6–10−8. However, if ε̄ is low
and the duty cycle is low, 1SN could be �10−10.

If the majority of the gravitational waves are generated in relatively long duration spin-
downs of neutron stars the spectrum will be dominated by a continuous stochastic component,
but if it is emitted in short supernova bursts, the popcorn component will dominates. If the
energy density of the early star formation stochastic background is ∼10−8, then it should be
eventually detectable by pairs of advanced detectors [54].

To show the signals on the same scale, which relates to detectability, stochastic sources are
assumed to have been integrated up for times ∼108 s, binary coalescences have been integrated
over the coalescence frequency range, while the burst sources signal strengths are the only ones
representing the instantaneous signal amplitude.

Finally, to summarize our discussion of sources, we present a graph (figure 8) containing
estimates of various events. The comparison is approximate, as it compares various sources
detected by various techniques. Supernovae signals would appear as bursts requiring no special
signal processing. However, estimates must allow for a wide range of efficiencies and source
distances. Black hole formation is similarly uncertain.

2.9. Cosmological gravitational waves from the big bang

Various sources of gravitational waves from the early universe have been hypothesized. These
may be thought of as the gravitational wave analogue of the microwave cosmic background
radiation. The cosmic microwave background originated at the epoch of last scattering, at a
redshift z ∼ 103 when neutral gas first formed in the universe. Thus, the microwave background
probes the universe when it was ∼105 years old. A similar background of neutrinos should
also exist, a relic from their epoch of last scattering, about 0.1 s after the big bang, at a redshift
z ∼ 1010. Due to the weak coupling of gravitational waves with matter, their epoch of release
would have been much earlier still, at around the Planck time ∼10−43 s, or z ∼ 1030.

Thus primordial gravitational waves offer the tantalizing possibility of probing the universe
very near to the moment of creation. Unfortunately, we do not have accurate predictions about
their amplitude. It has been suggested that the background could have been parametrically
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Figure 8. Spectrum of gravi-
tational wave sources [18, 22].
In this figure, the abbrevia-
tions are: BH, collapse to black
hole; NS/NS, neutron star coa-
lescence; NS evol, secular evolu-
tion of a nonaxisymmetric neu-
tron star.

amplified during a period of inflation, or that phase transitions in the early universe (for which
there is no experimental evidence) could have created an enhanced background. If there was
no process to enhance the background amplitude, then we need consider simply a thermal
background that was in equilibrium at the extremely high energies of the Planck era. The
background will then have been redshifted like any other radiation. Today this radiation would
be in the microwave regime and have an amplitude h ∼ 10−35, which is beyond the possibility
of detection.

If the universe contained an initial inhomogeneity of amplitude hg [55], then today it
would have an amplitude at frequency f given roughly by

h ∼ 10−20hg/f. (2.12)

We have little idea of the initial amplitude, except for limits set by the cosmic microwave
background which implies that inhomogeneities traced by matter had an amplitude ∼10−5.
This would imply that the cosmological background amplitude could be 10−28 at 1 kHz, (which
is beyond terrestrial experiments) and 10−21 at 10−4 Hz, (which is experimentally accessible
by space laser interferometers).

A constraint on the cosmological background is set by considering the energy density, and
relating it to cosmological models. Thus cosmological backgrounds are often parametrized in
terms of the closure density fraction 1g . If the spectrum contains equal energy in each decade,
it has a slope of −1 on a logh–log f plot. For example, for the universe to be closed by gravi-
tational waves, 1g = 1, the amplitude hg would be 10−13 at 10−5 Hz, falling to 10−21 at 1 kHz.
For 1g = 10−6, hg falls by three orders of magnitude to 10−16 at 10−5 Hz and 10−24 at 1 kHz.

It would appear most unlikely that the universe be closed by gravitational waves, and it
would be surprising if gravitational waves contributed significantly to the missing mass. The
binary pulsar, in addition to confirming the emission of gravitational waves, also allows limits
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to be set on the stochastic background of gravitational waves, and on the time variation of
the gravitational constant. Taylor and co-workers [56] have used pulsar timing of the binary
pulsar PSR 1913 + 16 to set limits on cosmological backgrounds. The method only works
at very low frequencies where both pulsars and atomic frequency standards have sufficient
frequency precision that measurement of the arrival time variations of pulsar signals gives
useful sensitivity to gravitational waves. Taylor’s timing measurements over several years set
a limit to 1g ∼ 4 × 10−2 in the frequency range 10−9 to 10−12 Hz [56].

3. Detection of gravitational waves

3.1. An overview of detector technology

The development of gravitational wave detectors was pioneered by Joseph Weber in the early
1960s [4]. He used a massive aluminium bar as the antenna. Following his work, researchers
all over the world have been working hard to build different types of gravitational wave
detectors. The detection of gravitational waves is based on the following idea (as discussed
in section 1.2). A gravitational wave can be considered as a time-dependent strain in space
having two linear polarization states (h+ and h×). When the wave passes test masses in space
it will cause displacements of the test masses, as shown in figure 1. A measurement of the
relative displacements of the test masses is a measure of the wave. The gravitational wave
does work on electromagnetic field, such as a capacitance or a laser light field. Because the
displacements are very small, the momentum of the gravitational wave is in general limited
by the uncertainty principle. The quantum limit presents a significant but not insurmountable
barrier for future detectors.

A gravitational wave detector can be constructed from a pair of masses which can move
‘freely’ with respect to each other. They can be suspended as pendulums, so that in the
horizontal direction they can be treated as nearly free masses above the pendulum resonant
frequency. A pair of masses connected by a spring (figure 9(a)) can also be used to form
a resonant gravitational wave detector. Such a mechanical resonator will be driven by a
gravitational wave as long as it has spectral components at the resonant frequency of the mass–
spring system. If the detector is a high-Q resonator, it will continue to oscillate long after the
gravitational wave has passed. That is, the resonator remembers the effect of the gravitational
wave. A measure of the oscillation of the resonator will give information about the passing
gravitational wave.

The resonator need not necessarily be two masses connected by a spring. A lump of metal
such as a cylindrical bar is well suited to the purpose (figure 9(b)). The difference between the
bar detector and two point masses with a spring in between is that the bar detector has a set
of higher-order resonant modes. However, for the lowest resonant frequency, the bar can be
modelled just like two masses connected by a spring, with an effective mass equal to half the
mass of the idealized detector. A multi-spring mass resonator (figure 9(c)) can be constructed
to detect not only the amplitude of the gravitational waves but also the direction of the waves.
This leads to the idea of a spherical antenna [34, 57–59], as shown in figure 9(d).

All resonant-mass detectors use cryogenic techniques to reduce the thermal noise and to
enable the use of high-sensitivity superconducting transducers. A high Q-factor ensures that
the thermal noise (which even after locking has a very large amplitude compared with the
signal) is manifested as a highly sinusoidal, and hence predictable, waveform. A gravitational
wave induces a small change in the amplitude and phase of this waveform. Typically, the
memory effect is used to resolve the signal component averaged over perhaps a few hundred
cycles of the antenna. The time over which the signal can be resolved depends most strongly on
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Figure 9. Model of resonant-mass gravitational wave detectors. (a) Two masses joined by a spring.
(b) Bar detector. (c) Multi-spring mass detector. (d) Spherical detector, in this case formulated as
a truncated icosahedron, with six transducers located as indicated.

the sensitivity and electromechanical coupling of the transducer which is used on the antenna.
If the transducer is sufficiently strongly coupled, the signal could be resolved in perhaps a
single cycle, and then the measured bandwidth would be comparable to the antenna frequency.
Practical bar antennas to date have only demonstrated bandwidth of about 10 Hz. However,
improved transducers should soon allow the bandwidth to reach ∼100 Hz and eventually
near-quantum-limited sensitivity [60–63].

As indicated in figure 1, a passing gravitational wave will make a ring of particles
stretch and shrink alternately in orthogonal directions. An interferometer configuration which
can detect the relative position change between two orthogonal masses is a natural detector
configuration [64–66], as shown in figure 10. When a gravitational wave passes, the lengths
of the two arms of the interferometer change in antiphase. This results in a change in
the interference intensity at the output. This change in light intensity is a measure of the
gravitational wave. Since the test masses simply follow the passing wave pattern, these devices
can be expected to accurately trace the waveform. The advantage of this type of system is the
nonresonant feature and the fact that the scale of an instrument is set, not by the velocity of
sound (which limits a resonant bar to a few metres in length if the detector is to detect radiation
at ∼1 kHz), but by the velocity of light. Thus, a laser interferometer can detect gravitational
waves over a wide band of frequencies and can in principle be scaled up to 150 km arm length,
(for the same 1 kHz upper frequency) for which the absolute displacement 	L = hL is much
larger. Because 150 km arm length is impossible on the surface of the Earth (due to the
curvature of the Earth), practical instruments must be scaled down to several kilometres.

In reality, the problem of noise always limits the bandwidth of laser interferometers. In
their widest bandwidth configuration laser interferometers are limited by seismic and thermal
noise at low frequency and photon shot noise at high frequency, as we discuss in detail in
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Figure 10. Schematic diagram of a Michelson interferometer for use as a gravitational wave
detector.

section 5. This leaves a high-sensitivity bandwidth in the 100–500 Hz range. Optical tuning
can in principle be used to restrict the bandwidth considerably, allowing optimum sensitivity to
be achieved in narrower bands of several tens of Hz anywhere in the 10 Hz to several kHz range.

There is not a similar size constraint if a laser interferometer detector is placed in space.
Laser interferometers can be conceived, of scale size millions of kilometres, in Earth or solar
orbit. In this case practical considerations make such devices best suited to search for low-
frequency sources in the range of 10−1 to 10−5 Hz. Free-floating spacecraft carrying test
masses shielded from the solar wind, and low-power lasers should be able to achieve very high
sensitivity, limited eventually by the confusion limit of gravitational wave ‘noise’ from the
large number of binary star sources in the Galaxy (see section 3.2 for further discussion).

At even lower frequencies, signals from pulsars have been used as gravitational wave
detectors. Pulsars, and especially millisecond pulsars, represent precise-frequency sources,
close to the limit of the best man-made clocks. While we are accustomed to thinking of
gravitational waves changing the relative spacing of test masses, this picture can be confusing
when thinking of a pulsar as one of the test masses perhaps 1000 light years away. It is
easier to consider the pulsar beam passing through the curved spacetime due to the passage
of very-low-frequency gravitational waves in the vicinity of the Earth. (Both pictures are
equivalent however.) The result is that the gravitational wave causes changes in the arrival
time of the pulsar signal. Because the pulsar signal is weak, and because atomic clocks give
best precision over long periods of time, the optimum precision of this method of detection
occurs for frequencies ∼10−7 to 10−8 Hz [56].

Interferometric detection has the advantage that it gives intrinsic immunity to laser
frequency noise. Indeed, a laser interferometer can in principle use white light. However,
any single-beam detector is sensitive to frequency fluctuations in the source. The sensitivity
limit is set directly by the frequency stability of the radiation source: h ∼ 	f/f . Since
frequencies can only be compared against a standard, the limit of a single-beam detector such
as a pulsar signal is either the stability of the pulsar, or the stability of the frequency reference:
today 	f/f ∼ 10−16.

The pulsar timing technique can to some extent avoid this single-beam clock stability
problem by using several pulsars in different directions. A gravitational wave creates correlated
fluctuations depending on the pulsar direction so that in principle it should be possible to dig at
least an order of magnitude below the clock stability limit. Unfortunately, solar wind refractive
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effects and interstellar scintillation are very strong in the MHz–GHz frequency range of strong
pulsar signals. This provides an additional noise source that could mimic a gravitational wave.

There is no need in principle to rely on pulsars to provide the timing source for single or
multibeam detection of gravitational waves. Interplanetary spacecraft generally transpond a
ground-station-generated precision clock frequency back to the ground station. Comparison of
the return signal frequency and the transmitted frequency predominantly records the spacecraft
velocity, seen as a Doppler shift. Gravitational waves will appear as a perturbation in the
Doppler tracking signal. Because the signal strength is stronger than for pulsars, and the path
lengths are shorter, Doppler tracking is sensitive in the 10−4 to 10−5 Hz band. Solar wind
refraction is again a very serious limit, but in this case it could be overcome if tracking took
place at various frequencies, and if the frequencies used were increased into the millimetre
wavelength range. Doppler tracking experiments [67, 68] have taken place successfully as
low-cost add-ons to space missions, but the technique is unlikely to compete with space laser
interferometers. Future interplanetary spacecraft equipped with nanosecond pulsed lasers
avoid all local refractive errors from solar plasma, but solar wind buffeting causes additional
noise which must be overcome by drag-free spacecraft technology.

3.2. Space laser interferometer gravitational wave detectors

A joint NASA–ESA space mission has been proposed, to place into solar orbit a set of three laser
transponding spacecraft which would form a space laser interferometer for gravitational wave
detection. The idea is to create a nested set of interferometers in a triangular configuration, and
to use active transponding rather than passive interferometry as used in terrestrial detectors.
The space environment allows the path length to be increased to 5 million kilometres. Consider
first one vertex of the triangle. A pair of stabilized CW laser beams are transmitted through
telescopes in 60◦ Y-shaped arms of the spacecraft, to two identical target spacecraft 5 million
kilometres away. Each receives a very weak signal, but one sufficient to allow an on-board
laser to be coherently phase locked to the incoming beam with a slight offset frequency. This
laser is then directed back to the originating spacecraft. Thus the distant spacecraft acts like
an active mirror, returning the incoming signal to its origin.

LISA (laser interferometer space antenna) as proposed uses three spacecraft in a special
solar orbit. All six laser beams create three independent Michelson interferometers. The in-
coming beam at each arm has its phase compared (by beating) with some of the outgoing signal.
That effectively measures the changes in the length of one arm. The same measurement is done
in the second arm by the second laser beam. The phase differences are compared, to create a
monitor of the arm length differences which could indicate the passage of a gravitational wave.

The above concept can give excellent sensitivity, as shown in the sensitivity curve for
LISA in figure 11. This is only achieved if many noise sources are greatly reduced. The first
is the buffeting by the solar wind. To overcome this noise the spacecraft are centred around
a free-floating test mass, which is shielded from the wind. The spacecraft are controlled by
miniature ion drives—field emission electric propulsion thrusters—to maintain the spacecraft
location centred on the test mass. The forces required are ∼10−6 N.

A second potential source of noise is the gravity gradient due to the thermal expansion and
contraction of the spacecraft structure. This can be overcome with careful design and thermal
shielding.

To be able to use low-power thrusters the spacecraft must be placed in an orbit in which their
relative positions have very high intrinsic stability. An orbit that achieves this requirement [69]
is a heliocentric orbit of about 1 AU, 20◦ behind the Earth. The orbits of the spacecraft have
a small eccentricity of e = d/(D

√
3), and a small inclination i = d/D, where d is the
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Figure 11. The sensitivity curve of LISA, along with its prime gravitational wave sources [322].
This is the sensitivity achieved after one year of integration.

Figure 12. The positions of the proposed LISA spacecraft in heliocentric orbit [323].

triangle arm length and D = 1 AU is the semimajor axis of the orbit. Remarkably, three
pairs of spacecraft in these orbits, with careful specification of their nodes, appears to maintain
a nearly ‘rigid’ configuration which rotates slowly while maintaining the triangle in a plane
which is inclined at 60◦ to the ecliptic. The positions of the spacecraft are shown in figure 12.

An important question is the orbital stability. If the relative spacing of the satellites changes
too rapidly the fringe rate becomes high and the noise contribution from the local oscillator
(which is used to apply frequency offsets and measures the fringe rate) becomes relatively
larger. Thus it is essential that the fringe rate be low. Ideally the difference in arm length
changes between two arms should be reduced to mm s−1, less than the nominal metres per
second arm length changes predicted for the proposed orbits. Stabilization schemes for the
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Figure 13. Artist’s impression of space interferometer (LISA).

local oscillator through modulating the light in one arm or through the use of improved local
oscillators should allow these problems to be overcome. Spacecraft manoeuvres are required
occasionally to compensate for accumulated orbital drift.

Figure 13 shows an artist’s impression of this remarkably ambitious conception. A large
team of scientists is pursuing this project, which should fly in the second decade of the twenty-
first century. More details are available from the LISA web page (http://lisa.ipl.nasa.gov/).

3.3. The world array of resonant-mass detectors

The improvement of resonant-bar detectors since they were first reported by Weber has
been enormous. Their amplitude sensitivity has been increased several hundred times,
corresponding to an improvement in flux sensitivity of about five orders of magnitude. Current
detectors are sensitive to narrow frequency bands near 700 Hz and 900 Hz, but improvements
will increase the bandwidth of each to>50 Hz. Figure 14 shows one of the present resonant-bar
detectors.

An array of five resonant-mass gravitational wave detectors, coordinated under the
International Gravitational Events Collaboration is in operation [70, 71, 110, 114, 156]. The
detectors are located at Baton Rouge (Louisiana), CERN (Geneva), Legnaro (near Padova),
Frascati (near Rome) and Perth (Australia). The data are available at a web address
(http://axln01.lnl.infn.it/igec/). Since 1993 between two and four antennas have been in
coincident operation searching for bursts at a strain sensitivity better than 10−18 (see figure 16).
This is sufficient to detect strong galactic gravitational wave bursts, but insufficient for detection
beyond our Galaxy. Over the past two decades the limits to the strength and rate of gravitational
wave burst events impinging on the Earth has been reduced substantially, but these limits are still
below astrophysical predictions. Thus, so far, it can be stated that the rate of gravitational wave
bursts is not two orders of magnitude greater than expected from conservative astrophysical
predictions, or else that their strength is not at the high end of predicted signal strengths
(ε > 10−2, see figure 29 for quantitative results).
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Figure 14. Photograph of the antenna NAUTILUS at Frascati, showing the bar and its cryogenic
shields.

The resonant bars have been used for rather deep pulsar searches in certain directions
(h ∼ 10−23) [71] (see figure 30) and, by using cross-correlation, have been used to set
impressive limits on the stochastic background of gravitational waves (h ∼ 10−22) [84].

Some of the resonant-bar detectors are being improved with better transducers and
amplifiers, allowing their bandwidth to be increased towards 100 Hz. This improves the
burst sensitivity and time resolution which in the immediate future should allow an order-of-
magnitude improvement in burst sensitivity. Efforts are underway to create quantum-limited
transducer systems (e.g. [72]) which should eventually allow a further order-of-magnitude
improvement in amplitude sensitivity.

To match the ultimate sensitivity of long-baseline laser interferometer detectors (see
below), it is necessary to increase detector mass from a few tonnes to a few hundred tonnes.
Such massive spherical detectors have been proposed and development work is underway on
small prototypes in Frascati, Leiden, and Sao Paulo [73–75]. As already noted they have
the advantage of omnidirectional sensitivity. They use the proven cryogenic techniques of
the existing resonant-mass detectors, but to scale up to hundred tonnes represents an exciting
major engineering challenge (see section 4.10 for more details).
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(a)

(b)

Figure 15. The LIGO detector at Hanford. (a) An aerial view, (b) the vacuum pipe tunnel and
(c) the main cornerstation.
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(c)

Figure 15. (Continued)

3.4. Laser interferometer detectors

Three long-baseline laser interferometer gravitational wave detectors have been or are being
constructed. The US LIGO Laboratory consists of two 4 km arm length detectors, at
Hanford, Washington State, and Livingstone, Louisiana (http://www.ligo.caltech.edu). The
Italian/French VIRGO project is completing a 3 km arm length instrument at Casina,
near Pisa (http://www.virgo.infn.it). Smaller detectors are under construction at Hannover
(the German/British GEO project, 600 m arm length, http://www.geo600.uni-hannover.de),
Tokyo (TAMA 300 m arm length, http://tamago.mtk.ano.ac.jp) and Perth (80 m arm length,
http://www.gravity.pd.uwa.edu.au). Figure 15 shows some photographs of the LIGO detector
in Hanford: (a) an aerial view, (b) the vacuum pipe tunnel and (c) the main cornerstation.
The long-baseline laser interferometer detectors are initially expected to achieve sensitivity as
shown in figure 16.

Laser interferometers are complex instruments limited by a range of noise sources: internal
thermal noise in the mirror test masses, seismic noise, radiation pressure noise, laser frequency
noise, control system noise, residual gas refraction noise etc. All noise sources must be reduced
as far as possible to allow the detectors to achieve high sensitivity. The first decade of the
twenty-first century will see steady improvement of the detectors. Late in that decade it is likely
that major improvements to the detectors will be possible using improved lasers, improved test
masses and improved vibration isolation. Figure 16 shows the expected improvements.

Ultimately, both laser interferometers and resonant masses can be improved by using
various quantum measurement techniques. Laser interferometers can in principle also be
improved by use of cryogenic methods, and by increasing their arm length.
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Figure 16. Rough comparison of various detector technologies and some sources. Note that the
sensitivity depends on the type of signal searched for: the resonant-mass sensitivities quoted refer
to burst sources (e.g. the narrow-band sensitivity of bars has already been demonstrated at 10−23).
At low frequencies interacting white dwarf binaries (IWDB) and neutron star binaries are known
sources. At high frequency the only known source is neutron star binary coalescence: all the others
have unknown signal strength.

All gravitational wave detectors provide data dominated by noise. All face difficult data
processing challenges. In the following we shall briefly review some of the main issues in
the context of the various classes of gravitational wave sources, before going on to examine
resonant-mass and laser interferometer detectors in more detail.

3.5. Issues of data processing and signal detection

There are many important and still unresolved issues of data processing which it is necessary to
solve to enable detection of signals to the levels anticipated from a simple analysis. These issues
affect burst detection, stochastic background detection and narrow-band detection. Since the
general analysis principles are independent of the type of detector used, we will discuss some
of them in generality.

The raw data from a detector must first be filtered. In section 2.2 we discussed the use of
matched filters or optimal filters to extract particular signals. An optimal filter is one which
maximizes the signal-to-noise power ratio for a particular signal waveform. The term matched
filter arose because in the special case where the noise is white, the optimal filter is one with
an impulse response which matches the shape of the input signal. In these ideal circumstances
the matched filter is simply a template of the waveform one desires to detect.

Think of the data from a detector over a particular period of time, due to some input
signal. In a perfect noise-free detector it would create an output signal s(t) which is uniquely
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determined by incoming signal and the detector impulse response. After sampling, a real
detector output consists of a two-dimensional array of output values oi and time values ti :
{oi, ti}. But oi = si + ni is a sum of the input signal si and the noise ni . The template is a
noise-free array representing s(t), but it has an arbitrary phase, so can be represented {sj , tj }
where the difference between i and j represents a time difference. When the template is
aligned with the signal i = j and the sum of the products oisi(=s2

i + sini) over all values
of i will be maximal. At times when si is zero there is no noise contribution. The template
which accurately matches the ideal signal response of the detector is therefore the optimal filter
function.

In practice one could apply a large calibration signal and measure the output signal to
create such an optimal template.

Often it is more convenient to consider the problem in frequency space. In frequency
space the phases of the noise frequency components are random and uncorrelated. If you
multiply the Fourier transform of the output data O(f ) with the complex conjugate of the
Fourier transform of the signal waveform s∗(f ), the signal component will be positive definite
while the noise phases remain random. Summing over frequency space, the signal will add up
but the noise frequency components will tend to cancel. Thus, in frequency space the matched
filter transfer function is simply the complex conjugate of the Fourier transform of the input
signal s∗(f ).

In almost all real situations the noise is not white. However, coloured noise can be
whitened by passing it through a filter with a transfer function equal to S

−1/2
n where Sn is the

noise power spectral density of the noise. Thus, the optimal filter transfer function is simply
s∗(f )/S

1/2
n . In the time domain the same correction for coloured noise is made using the noise

autocorrelation function whose Fourier transform is Sn.
All optimal filters require a sum over frequency or time. If the signal is transient, then the

sum will be zero after the signal has passed and the detector has stopped responding. For a
resonant bar this will be several ring-down times of the bar (after which all memory of the signal
is lost). In the same time before the signal arrives the bar loses memory of its instantaneous
mechanical state. Thus it is only necessary to integrate over a modest time interval before and
after the signal arrives. The Louisiana State University (LSU) group have implemented a time
domain optimal filter by applying a large ‘signal’ pulse using a calibrator, and measuring the
detector response, as well as the detector noise in the absence of a signal. Other bar groups
have used frequency domain filters and obtained similar results [76].

There are many ways to implement optimal filters and the best choice often involves
minimization of computation requirements for the particular search. For some systems optimal
filters can be implemented in quasi-real time whereas for others the need for prior data requires
the search to be conducted off-line.

A particular issue is that of noise stationarity. In practice, stationarity of the noise is not a
good approximation. This means that the noise spectrum at the output varies with time, due,
for example, to environmental effects such as variable microseismic noise from changes in the
ocean wave conditions [77]. To overcome slow changes in the detector noise distribution it is
possible to always use recent noise data for the creation of the optimum filter. Several groups
use noise from the previous few hours to continually adapt the filter [78].

Another problem relates to the fact that in gravitational wave detectors it is impossible to
turn off the signal, and possible signal-like noise events (such as cosmic ray events). Thus, in
principle it is impossible to measure the noise spectrum in the absence of signal. In practice
today this is not a critical issue (signals are rare and very small), but for future detectors it may
be important to ensure that the filter does not suppress signal by confusing it with noise. Heng
has shown [79] that periodic transient bursts are indeed suppressed by an optimum filter if the



1352 L Ju et al

bursts are present during the measurement of the noise distribution.
For CW signals, a Fourier transform of the entire data set represents an optimal filter. By

this method the signal appears as a narrow spectral line. If the Earth’s orbital and rotational
Doppler corrections are included this method can be used to search for unknown CW signals
(such as those due to isolated spinning neutron stars) in a particular direction (because the
Doppler correction is direction dependent, see figure 30).

Traditionally the lock-in amplifier or phase-sensitive detector (PSD) has been used to
create a matched filter operating in the time domain for CW or near-CW signals. For modern
systems this type of filter can be implemented by software (hence not in real time) which
allows it to be used for multiple searches through the same piece of data. It also allows CW
searches with arbitrarily long integration times. (The traditional analogue lock-in amplifier is
limited by the charge storage time of a capacitor.)

The lock-in amplifier form of the matched filter multiplies the data by +1 during the
positive going signal cycle, and −1 during negative parts of the cycle. All results are summed.
The sum represents the phase coherent integral of the absolute value of the signal over the
observation time: hence the alternative name for this method: coherent integration. The noise
components average towards zero, and a small signal component previously buried in the noise
will emerge.

Assuming that the phase of the incoming signal is unknown, it is necessary to repeat the
matched filter at 90◦ phase shift to determine the magnitude of the orthogonal components
of the signal. (For example, if the signal was a pure sine function, the matched filter would
give a zero output if the +1 and −1 multipliers were defined by a cosine function.) Clearly, if
there were slowly varying phase errors due to errors in the timing of data acquisition, errors in
direction for Doppler corrections, or errors in the prediction of the waveform, the accumulated
result from a matched filter could average to zero.

For a CW source of fixed but unknown frequency it is usually simpler to replace matched
filtering with the fast Fourier transform. However, if the frequency is modulated in a known
pattern (such as occurs when you search for a signal from a known binary pulsar) [80] the
coherent integration is computationally simpler.

Attempts at gravitational wave burst detection have normally followed techniques first
introduced by Weber. By this method the data is first filtered, as discussed above, and then
thresholded to obtain a list of candidate events. Some events will be due to spurious effects
(see below). These can be vetoed if the appropriate monitor channels are used. Then the
event lists for widely spaced pairs of detectors are correlated to search for coincidences. If
the time axes for the event lists are randomly displaced one expects all correlation due to
possible gravitational wave bursts to be absent. Thus it is possible to compare true-time
coincidences with time-shifted coincidences to determine whether there is an excess of ‘zero
time delay coincidences’. This method is powerful since it allows the probability of accidental
coincidence to be experimentally determined by simply running the random time shift analysis
a sufficient number of times to obtain an accurate estimation of the probability of the observed
peak. However, it is only relevant when the number of accidental coincidences is large.

Consider, for example, a six-month coincidence run which might yield 5000 ‘candidate
events’ in each detector, most of which are assumed to be noise or interference. The coincidence
analysis might yield 30 true-time coincidences. For such analysis with existing resonant bars
the coincidence window is usually more than 0.1 s, so that propagation delays across the Earth
(∼40 ms) can be neglected. Then 1000 random time delays are applied to the data of one
detector and of these 10 might show 30 or more coincidences. If this was the case, then the
zero time delay peak would have a probability that it was accidental of 10/1000 or 1%. This
probability could be resolved with more accuracy if more random time delays were used. In
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this type of experiment the time delays which are chosen must either be small compared with
total duration of the experiment, or they should be modulo the experiment duration so that
coincidences are not lost at the ends of the record.

A serious pitfall can occur in this type of analysis if the threshold for candidate event
selection, or any other vetoing scheme, is variable during the coincidence experiment. To have
such a variable accessible to the persons analysing the data can allow conscious or unconscious
selection which can completely invalidate the statistical significance analysis. It can be very
difficult to estimate the true significance after such selection has taken place. Since the days
of Weber, researchers have been in general very careful to pre-set all thresholds to try to avoid
such pitfalls.

For the existing array of five resonant-mass detectors it has been suggested that the entire
body of data from all detectors should be used rather than candidate events. As discussed
in the next section, the accidental coincidence rate is extremely low for five detectors. The
thresholding method means that all phase information is lost. However, it need not be lost if
the data from separate detectors are recombined along the lines used by VLBI radioastronomy.
If this was done the detectors could represent a single telescope with angular resolution for
incoming bursts set by the ratio of the time resolution (in principle ∼100 µs) and the near-
Earth-diameter baseline (40 ms). However, the noise increases exponentially as one digs to
lower and lower energy so the overall amplitude sensitivity of the array would be limited to
∼3 times.

Most data from terrestrial gravitational wave detectors can be idealized as the sum of a
pair of thermal distributions. The first is the intrinsic Boltzmann distribution of the detector
noise that one would measure using a spectrum analyser. This is usually due to some well
understood noise sources such as thermal noise, electronics noise or shot noise. The second
distribution is described as excess noise. Excess noise arises from rare and poorly understood
sources. In the detector NIOBE at the University of Western Australia (UWA) some of the
excess noise was correlated with electromagnetic pulses and seismic noise [81]. However, the
majority was not identified, but might be due to strain relief events. Surprisingly, the excess
noise distribution is rather similar for widely differing types of resonant-mass gravity wave
detector. Figure 17 shows the idealized form of these distributions. Both may be expressed as

N = N0e−Ee/kT . (3.1)

For a typical resonant-bar detector the intrinsic distribution parameters would be: N0 ∼ 105 per
day, and Ee ∼ few millikelvin (Kelvin is simply a convenient energy scale). The excess
distribution typically would have N0 ∼ 10 per day, and Ee ∼ few 100 mK: that is, the excess
noise distribution has an event rate 104 times lower than the thermal distribution, and an
effective energy 100 times larger. The presence of these two distributions allow improved data
analysis, as discussed in section 4.8.

Periodic signals can be detected by coherent integration or Fourier transform methods.
Because, as always, signals are near to the limit of detection sensitivity, long integration is
needed. However, in long integrations signals will be smeared out by the Earth Doppler motion
unless the source direction is known. Equally, if the source is a member of a binary system
such as a binary millisecond pulsar it is necessary to know the ephemeris of the system itself
as well as the precise source direction to prevent Doppler smearing of the signal. If coherent
integration can be achieved, then the signal-to-noise ratio improves as τ 1/2, which can allow
very deep searches over a 1–3 year period.

The nearest millisecond pulsar PSR 0437-4715 is a typical such potential source. In this
case the pulsar source is a binary system, which is extremely well defined by pulsar timing [82].
The observed radio pulse timing gives very accurate information which can be used to gate the
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Figure 17. Detector noise is often characterized by a pair of Boltzmann distributions. The steep
curve is the typical antenna thermal noise distribution for burst detection in a resonant bar. The
flatter curve is the excess noise distribution due to rare disturbances.

phase-coherent integration of the detector output [80]. Such methods were pioneered by the
Tokyo group [83] led by Hirakawa searching for gravitational radiation from the Crab pulsar.

It is likely that many such narrow-band sources will not be detected in advance by radio
astronomy. Pulsar beaming ensures that the majority of pulsars are not visible in radio, and
normal pulsars older than 108 years appear to cease to emit radio beams. There could easily be
1000 rotating neutron stars within the range of the nearest observed pulsars (∼100 pc) meaning
that a few old neutron stars could exist within 10 pc of the solar system.

Unfortunately, our ability to search for such sources is very poor because of the difficulty
of searching all directions in the sky. The most obvious search strategy involves applying a
separate ephemeris correction for each of typically 1010 source directions, and re-integrating the
data 1010 times. This already is a daunting computational exercise, but it becomes 1010 times
harder if the search space has to involve all possible binary orbits of the pulsar. Many
investigators are searching for efficient algorithms to solve this problem, based on alternative
filtering techniques or hierarchical searches [84].

As discuss in sections 2.2 and 2.8, stochastic signals can be detected by cross-correlation
of nearby gravitational wave detectors. For optimum sensitivity the detectors must be located
within about one reduced wavelength (λ/2) of each other. If the spacing requirement
is satisfied, the signal-to-noise ratio increases as the 1

4 -power of the number of cycles
observed [85]:

S

N
=
(

S2
gw

S1S2
Bτ

)1/4

. (3.2)

Here Sgw is the gravitational wave background power spectral density, S1 and S2 are the spectral
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noise density of two detectors, B and τ are the bandwidth and duration of the observation
respectively. Thus, a stochastic signal of characteristic frequency ∼100 Hz can be cross-
correlated to gain a factor of 102.5 in signal-to-noise ratio (compared with the observation of a
single cycle) after 108 s integration. Schutz [85] has shown that this method can be particularly
effectively applied to signals in detectors of quite different types: specifically resonant-mass
detectors and laser interferometers, which conveniently are planned to be located in sufficiently
close proximity to each other to satisfy the above spacing requirement.

The simplest cross-correlation experiment merely gives an output consisting of a single
number (and a measure of its statistical significance). This can be quite misleading since there
are many ways that cross-correlation can give a false positive result. The major difficulty in
cross-correlation signal processing is to ensure that no correlated technical noise components
exist in the signals. Remembering that the signal detected is generally going to be at least
100 times lower than the spectral noise floor accessible using normal fast Fourier transform
diagnostic instrumentation, correlated features can exist which could never be detected in
short-term monitoring. The correlated features could be weak spectral lines such as those
created by electrical power harmonics, (which are phase coherent over the electrical grid) or
occasional transients such as those due to lightning flashes. To prove that a positive cross-
correlation signal was associated with gravitational waves it would be necessary to show
that the correlation was preserved across the accessible frequency band, and that it was not
due to intermittent transients due to electrical interference. The individual output spectra of
the detectors would need to be resolved for weak spectral features to the same depth as the
correlation detection threshold. Much effort at developing algorithms and solving some of
these practical problems is underway [53, 86].

Giazotto [87] has shown that the stochastic background signal from the combined old
radio pulsars in our Galaxy should be detectable in a single detector, due to the fact that they
are non-isotropically distributed relative to the solar system. The central concentration of
pulsars means that there should be a strong sideband modulation of the stochastic background
intensity as the detector sweeps the sky during Earth rotation. This signal should appear in the
technically very demanding 1–10 Hz frequency band.

The next two sections present resonant-mass detectors (section 4), and then laser
interferometer detectors (section 5), with emphasis on techniques and the solution to various
technological challenges.

4. Resonant-mass detectors

4.1. Introduction

Resonant-mass detectors are designed to measure acoustic signals induced in a large mass due
to its coupling to a gravitational wave. Resonant detectors were first developed by Weber dur-
ing the 1960s [4]. They consisted of large vibration-isolated aluminium cylinders instrumented
with piezoelectric crystals glued on the surface near to the centre. A low-noise amplifier and
lock-in amplifier allowed detection of the energy of the fundamental longitudinal resonance of
the bar. A gravitational wave applies a time-varying quadrupole deformation and does mechan-
ical work on the bar. The absorption cross section of the bar to gravitational waves depends on
its mass and sound velocity. The cross section is highest at the fundamental resonant frequency.
The latter is linked to its length and sound velocity, since its length must be half an acoustic
wavelength at the fundamental longitudinal resonance. Weber chose aluminium because of
its high sound velocity and availability in large pieces, and because it has quite low acoustic
losses. Following Weber, many new resonant-mass detectors using similar techniques, but with
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variations and improvements, were developed in the early 1970s. Following null results these
were abandoned, but advanced resonant-mass detectors using cryogenics and superconductiv-
ity continued to be developed. Fairbank et al [88] and Hamilton et al [89] first proposed such
cryogenic detectors, and proposed cooling to millikelvin temperatures to minimize thermal
noise. Today two detectors in Italy are in operation at temperatures below 100 mK.

In all resonant-mass detectors the large amplitude of thermal vibration considerably
exceeds the gravitational wave amplitude expected from astrophysical sources. Without
methods to suppress this noise the principle of detection by resonant masses would be
impossible. Weber’s key contribution was the realization that in a high-Q antenna—one
with a low acoustic loss—the effective noise energy is reduced by a factor ∼τi/τa , where
τi is the effective measurement integration time, and τa is the antenna ring-down time. The
advantage of using a low acoustic loss antenna follows directly from the fluctuation–dissipation
theorem [90]: the greater the dissipation the greater the fluctuations or noise level imposed
by the thermal reservoir. A high-Q antenna approaches an ideal harmonic oscillator, whose
motion is exactly predictable at a time in the future from the observed amplitude, frequency
and phase at an earlier time. High levels of predictability means that very small deviations from
sinusoidal behaviour can be resolved given a sufficiently sensitive transducer for monitoring
its motion.

4.2. Intrinsic noise in resonant-mass antennas

To understand the operation of a resonant-mass gravitational wave detector it is convenient
to start with an old-fashioned approach first introduced by Gibbons and Hawking [91]. This
approach is intuitively obvious but is not consistent with the optimal filter theory discussed in
section 3. The instantaneous state of the antenna can be described by the pair of symmetrical
harmonic oscillator coordinates X1 and X2 given by

X1 = A cosφ

X2 = A sin φ,
(4.1)

where A is the antenna amplitude and φ is the phase. Experimentally, X1 and X2 can be
easily measured using two lock-in amplifiers or PSDs in a configuration shown schematically
in figure 18. They may be analogue or digital or software devices. The state of the antenna can
be represented by a point P1 in the (X1, X2) plane. The amplitude A = |P | = (X2

1 + X2
2)

1/2

and phase φ = tan−1 X2/X1. This is illustrated in figure 19. A gravitational wave causes the
antenna to move from P1 to P2. The direction of this motion depends on the relative phase of
the gravitational wave and the resonant mass. To extract a signal the measuring system should
monitor	|P1−P2| = (	X2

1 −	X2
2)

1/2. The quantity	2 is described as the energy innovation
and its magnitude, properly calibrated and expressed in the units of Kelvin (1.38 × 10−23 J)
describes the effective temperature of the antenna.

In a noiseless antenna the motions of the vectorP would only be due to gravitational waves,
but in practice P is driven by thermal fluctuations in the bar. Thermal fluctuations cause the
state vector P to execute a random walk in the X1X2 plane. A high-Q mode is weakly coupled
to the thermal reservoir which is made up of all the higher modes of the system. The antenna
loses energy slowly into the reservoir, and equally it is only weakly excited by the reservoir.
The relaxation time τa = 2Q/ωa thus characterizes both the rate of decay after a high-energy
excitation and the rate of amplitude change when the mode is in thermal equilibrium with the
reservoir.

Clearly, if τa is large and the rate of fluctuation is low, the antenna becomes more
deterministic on time scales that are short compared with τa . The mean energy is still kT ,



Detection of gravitational waves 1357

Bar Transducer

Amplifier

PSD

PSD

Reference oscillater
0ß
90ß

ωa

ωa

X1

X2

Figure 18. Antenna readout systems for obtaining harmonic oscillator coordinates X1 and X2.
The down-conversion with the PSD was conventionally done with analogue electronics but today
can be achieved in software using fast digital sampling [78].
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Figure 19. X1–X2 representation of the state of the antenna.

but the expected change in energy in a sampling time τi is kT (τi/τa). The temperature
T (τi/τa) is the effective temperature or noise temperature of the resonator, and quite clearly
can be made less than the actual temperature. Indeed, even when transducer readout noise is
included, a noise temperature of less than 2×10−4 of the thermodynamic temperature has been
demonstrated in the detector NIOBE. To use temperature to describe the antenna noise implies
that the distribution of 	2 has a Boltzmann distribution. This is an excellent approximation
(see figures 17 and 28). The slope of the distribution as well as its mean value gives the antenna
noise temperature.

The above analysis describes a predictive filter for the detection of short bursts. In this
case our prediction is that the amplitude and phase of the detector will remain unchanged over
the integration time. Today all operating detectors use optimum filters for the detection of
short bursts. The optimum filter improves on the simple predictor discussed above because it
implicitly takes into account the dynamics of the system for times of the order of the antenna
ring-down time over which the motion is correlated. They are implemented as discussed in
section 3 and enable the antenna noise temperature to be improved by a small factor. The most
popular optimum filter or matched filter is the Weiner–Kolmogoroff filter which is designed to
detect short delta function bursts [92]. Today, such filters are routinely used since they were
shown by Pizzella et al [93] to give substantially improved performance.
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Every antenna must use a sensitive transducer to read out the motion. The transducer, like
all electronic devices, has a residual broadband noise floor. This noise floor is equivalent to
the Johnson or Nyquist noise of a resistor, given by V 2

n = 4kT RB, where R is the effective
resistance of the transducer and B is the measurement bandwidth. However, the bandwidth is
roughly the reciprocal of the measurement integration time τi . Thus it follows that the noise
power is 4kT /τi . Comparing this with the Brownian motion noise, we see that one noise
source varies as τi while the other varies as 1/τi . Thus there is clearly an optimum bandwidth
set by the value of τi that minimizes the total noise.

Gibbons and Hawking [91] introduced a parameter β to characterize the coupling between
the bar and the transducer. They defined β as the proportion of the elastic energy of the
detector that can be extracted electrically through the transducer in one cycle. A bar–transducer
system with low β (weak coupling) requires more time for the signal energy to appear in the
transducer. The longer the energy transfer takes, the more time there is for fluctuations in
the antenna to dominate the noise. This point can be clarified by two alternative viewpoints.
One is a thermodynamical model. The antenna is considered as a thermal bath at temperature
Teff = Taτi/τa , coupled to a transducer with noise temperature Tt which itself is coupled to an
amplifier of noise temperature Tn.

A gravitational wave causes slight ‘heating’ of the fundamental mode and energy flows
through the coupling β. As long as β > 0 the transducer will eventually come into equilibrium
with the bar, but for a rapid response β has to be large. The thermodynamic approach
emphasizes that the coupling is not unidirectional: thermal fluctuations in the amplifier or
the transducer act back on the antenna producing back-reaction noise. Indeed, it is clear that
the transducer is a source of thermal fluctuations comparable to those originating within the bar.
Voltage noise in the transducer will convert into force noise acting on the bar. Like the forces
which act on the bar from the thermal reservoir, the back reaction will produce an additional
noise contribution which will diminish as τi reduces to zero, as does the Brownian noise.

The second viewpoint is that the antenna–transducer system is effectively a transmission
line designed to couple energy into the transducer. One can think in terms of phonons in the
bar which may be absorbed by the transducer, with the emission of a photon into the amplifier,
or they may be reflected back into the bar. Then β determines the impedance match between
the output impedance of the bar, Zout, and the transducer’s mechanical input impedance Zll .
The ratio Zll/Zout is simply the coupling coefficient β. See below for more discussion of this
point.

Once we begin to think in terms of quanta we are led to ask: what happens if the induced
strain in the antenna is equivalent to less than one quantum hωa? The profound significance
of the quantum mechanical limit to macroscopic measurements was realized independently by
several groups, particularly by Braginsky [94] and Giffard [95]. Giffard used the much earlier
result of Heffner [96] who showed that, by the uncertainty principle, a linear amplifier has a
fundamental limit to its sensitivity, given approximately by h̄ωa . Similarly, Giffard showed that
a transducer used with a linear amplifier (an amplifier which preserves phase and changes the
amplitude by a multiplicative factor) has a maximum sensitivity corresponding to a gravitational
wave which produces an equivalent of two quanta in the bar. The term equivalent is used
because the actual energy absorbed by the antenna depends on its instantaneous amplitude.
For linear systems the signal-to-noise ratio is independent of the amplitude, and corresponds
exactly to the signal produced in an ideal stationary antenna at absolute zero. Giffard’s result
meant that the maximum achievable sensitivity of an antenna would be limited to about the
single phonon level corresponding to a strain sensitivity ∼10−21. This is described as the
standard quantum limit.
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Meanwhile, at least as early as 1974, Braginsky and Vorontsov proposed that in principle
it might be possible to devise quantum non-demolition devices which could read out the state
of a system without disturbing it. Braginsky et al [97], Caves et al [98], Unruh [99] and others
went on to identify methods whereby gravitational waves of amplitude less than that required
to induce one quantum can in principle be detected using quantum non-demolition or back-
action-evading techniques. The possibility of mechanical measurements down to and below
the quantum limit in sapphire bars has been investigated in detail by Tobar et al [100]. The
most promising technique is through the use of amplitude-modulated parametric transducers.
This represents a small elaboration of parametric transducers of the type we will discuss in
section 4.4. The pump signal is amplitude modulated at the signal frequency to create an
intrinsically phase-sensitive measuring system. However, classical noise sources need to be
beaten down close to the quantum limit before such techniques can successfully pass the
quantum limit on real antennas.

4.3. The signal-to-noise ratio for burst detection

Resonant-mass detectors may be used to detect all of the signal classes discussed in section 4.2.
However, most effort has concentrated on the detection of bursts. In general, when a
gravitational wave in the right frequency range arrives, it excites all normal modes of the
bar that have a high quadrupole moment. A transducer attached to the bar will pick up the
signal, which must be discerned in the presence of transducer noise and a large Brownian
motion background, as discussed in the previous section.

The efficiency of the detector is determined by the fraction of the wave energy absorbed
and converted into acoustic energy inside the bar. Clearly, it is important that the bar absorb
as much as possible of the energy of the passing gravitational wave. This can be quantified in
terms of the antenna cross section as discussed below. Denoting the incident spectral energy
density of gravitational waves as w(f ), the energy deposited in the bar is given by

εg = σw(f ). (4.2)

The term σ in the above equation is the so-called cross section of a bar, which is the ratio of the
absorbed energy to the incoming energy, and thus a measure of the sensitivity of the bar. The
cross section is actually a function of frequency σ(f ) because the detector will absorb energy
more readily around the resonant frequency fo of the antenna. The total energy deposited in
the bar is then

E =
∫

σ(f )w(f ) df. (4.3)

Since for a high-Q system, σ(f ) is sharply peaked around the resonant frequency f0, only a
narrow portion of the gravitational wave signal around the resonant frequency of the bar can
be picked up by the detector. In this case we may write

σ(f )w(f ) df = w(f0)

∫
σ(f ) df. (4.4)

The cross section, first elaborated by Weber, can be expressed in several forms [7]. The cross
section of the bar, integrated over the frequency band, can be expressed as [101]∫

σ(f ) df = 8GM

πc

(vs
c

)2
m2 Hz, (4.5)

where vs is the sound velocity in the bar, and M is the mass of the bar. Clearly, to obtain
high sensitivity it is desirable to build detectors as massive as possible and from a material
having a sound velocity as high as possible. Usually, the size of the bar is chosen such that
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the fundamental mode is at about 1 kHz—about the expected frequency for the collapse of a
massive stellar core to a black hole. Aluminium has been used for most resonant bars. Niobium
is used for the bar detector at the University of Western Australia. Other materials could give
substantial advantages, as discussed in section 4.5 below.

A gravitational wave carries an energy flux S(J m−2 s−l) given by

S = c3

16πG
〈h2

+ + h2
x〉, (4.6)

where h+ and h× denote the dimensionless strain amplitudes of the two possible polarizations
of the wave. Since the shape of expected gravitational wave pulses from gravitational collapse
events is not accurately known, we cannot accurately determine the expected excitation of an
antenna even knowing the total pulse energy. We need to know both the spectral distribution
of the pulse energy, and the relationship between h and its time derivative. The details of the
expected pulses depend not only on the dynamics of the gravitational collapse, but also on the
mass of the collapsing object, both of which are uncertain.

If we assume only knowledge of the pulse duration τg (expected to be ∼10−3 s), and
that it is predominantly a single cycle, it is sufficient to assume that dh/dt ∼ 2h/τg . Then
equation (4.6) can be rewritten

S = c3

16πG

4h2

τ 2
g

. (4.7)

The total pulse energy E is then given by S · τg:

E = c3

16πG

4h2

t2
g

. (4.8)

If we assume that the spectral distribution of the pulse energy F(ω) is uniform over a
bandwidth 	ω ∼ 1/τg , it follows that

F(ω) ∼ E/	ω,= Eτg ∼ c3h/4πG J m−2 Hz−l. (4.9)

Numerically F(ω) ∼ 20 × 1034 h2.
The assumption used in obtaining the result must be emphasized: the result is simply an

order-of-magnitude estimate of the expected signal spectral densities. Moreover, variations
in the pulse durations could make any chosen antenna frequency only suitable for a small
proportion of actual events.

The energy deposited in an initially stationary antenna of mass M by a signal pulse F(ω)

follows directly from equation (4.5) combined with geometrical terms:

Us ∼ F(ω) sin2 θ cos2 2φ
8

π

G

c

(vs
c

)2
M (4.10)

where θ and φ are coordinates describing the orientation of the bar relative to the incoming
wave (as given in figure 20).

For a short burst of gravitational waves the bandwidth of the pulse is roughly the inverse
of the pulse duration which is roughly equal to the peak frequency. Under these circumstances
the strain amplitude δ1/1 induced in the bar is roughly equal to the incoming wave amplitude
h; there is no resonant excitation.

The incoming gravitational wave will only be detectable if the signal Us is greater than the
noise in the antenna Un. From an engineering point of view it is useful to characterize the noise
Un; we generalize the transducer to a two-port device described by a 2 × 2 impedance matrix
Zij . The transducer accepts force and velocity inputs F and v, giving current and voltage
outputs I and V :(

F

V

)
=
(
Z11 Z12

Z21 Z22

)(
v

l

)
. (4.11)
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Figure 20. Coordinate system for resonant antenna.

The transducer has input impedance Zll , measured in kg s−1, and output impedance Z22,
measured in ohms. The forward transductance Z21, measured in V m−1 s, determines the
transducer sensitivity whereas the reverse transductance Z12, measured in kg A−l, determines
the back-acting force on the antenna due to currents in the output circuit: see [100, 102–104]
for more details. Quantum mechanics tells us that it is impossible to make Z12 = 0: it is
impossible to create a perfect one-way valve.

All the noise sources in the transducer and amplifier can be expressed as equivalent spectral
densities of current and voltage noise at the input of the amplifier, denoted Si(ω) and Se(ω),
respectively, as illustrated in figure 21. The current noise Si is the source of back-action noise
in the antenna, whereas Se describes the series noise contribution. In terms of these quantities
the total system noise is given by

Un = 2kTa

τi

τa
+

|Z12|2
2M

Si(ω)τi +
2M

|Z21|2
Se(ω)

τi
. (4.12)

The first term in equation (4.12) is the Brownian motion or thermal noise in the antenna
discussed above. The second term describes the energy fluctuations arising from the current
noise acting back through the reverse transductance, and giving the back-action noise, also
proportional to integration time. The third term is the series electronics noise, which for given
Se is reduced as Z21 increases. As we saw above this term is proportional to the bandwidth
τ−1
I . Only the first term in equation (4.12) can ever be reduced below the quantum limit.

The problem of detecting gravitational waves with resonant-bar antennas to a large extent
consists of minimizing equation (4.12). The technical means of achieving this requires some
or all of the following:

(a) Reduce the antenna temperature Ta .
(b) Use a transducer with high Z21 and low Z12.
(c) Use amplifiers with Se and Si as low as possible.
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Figure 21. The various quantities used to characterize a gravitational wave antenna system.

(d) Reduce the acoustic loss in the antenna as well as the acoustic and electrical losses in the
transducer to obtain high-Q or large relaxation time.

(e) Obtain a reasonable impedance match between antenna and transducer to enable τi to be
small.

The last requirement can only be achieved by good impedance matching between the
mechanical input impedance of the transducer and the mechanical output impedance of the
antenna, which we shall discuss further below.

It is convenient to scale the noise in the system relative to the standard quantum limit of
one equivalent quantum induced in the bar. To do this we rewrite the noise equation (4.12) in
terms of noise number A (a quantity first used by Weber to characterize noise in masers):

A = Un/h̄ωa = AT + AB + AS. (4.13)

Here AT , AB and AS are the equivalent numbers of noise quanta due to thermal noise, back-
reaction noise and series noise in the measurement system. The experimentalists need to
achieve a total system noise number A approaching unity. For a 1 kHz resonant bar this
corresponds to a noise temperature of ∼0.1 µK. To achieve this it is necessary not only to have
a low-noise transducer, but also to use a low-acoustic-loss antenna material, and to suspend and
isolate the antenna so as not to increase the acoustic loss, nor to couple in excess noise from
the environment. Because the noise number contributions are additive there is no particular
advantage in reducing one of them far below the others.

It is useful to express the thermal and transducer noise contributions directly in terms of
the gravitational wave strain equivalent noise. The Brownian motion noise hB is given by [105]

hB ∼
(

kBT τi

Mωal2Q

)1/2

. (4.14)

For a bar detector, ωal = πvs , so the Brownian noise is given by

hB ∼
(

kBT τiωa

π2Mv2
s Q

)1/2

. (4.15)

Expressing the above equation numerically, we have

hB = 10−21

[(
f0

1 kHz

)(
1010 J

Mv2
s

)(
109

Q

)(
T

0.1 K

)( τi

10−2 s

)]1/2

. (4.16)

This means that a resonant-mass detector with the hypothetical parameters implied in the
above equation will have a Brownian motion noise strain of about 10−21. However, some of
the parameters given above are difficult to achieve in practice. For example, the energy term is
satisfied by about 10 tonnes of sapphire or 100 tonnes of bronze or niobium. In the case of the
UWA niobium bar with mass of 1.5 × 103 kg, resonant frequency of 700 Hz, sound velocity
of 3.4 × 103 m s−1, temperature of 4 K, Q-factor of 3 × 107 and measurement integration
time 1 s, the Brownian noise strain amplitude is 2.2 × 10−19. It can be seen that the bar must
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have a very high acoustic quality factor or much shorter integration time to reduce the effect
of the thermal noise. With today’s multimode impedance matching techniques, τi can indeed
be reduced to 10−2 s.

The sensor noise lower limit (series noise and back-reaction noise AB + AS) is set by the
standard quantum limit [105]

hSQL ∼
(

2h̄ωa

π2Mv2
s

)1/2

∼ 1.1 × 10−21

(
fm

1 kHz

)1/2 (103 kg

M

)1/2 (
104 m s−1

v2
s

)
. (4.17)

This sets a strain amplitude limit ∼10−22 for a 100 tonne resonant-mass detector such as the
proposed spherical detectors.

4.4. Transducers

Transducers for resonant-mass gravitational wave antennas fall into two categories: passive
transducers and parametric transducers. Passive transducers have no external power source,
and their power gain is less than unity. They must always be used with a high-gain, low-noise
amplifier at the frequency of the antenna. Parametric transducers, on the other hand, have an
external power source (a pump oscillator at frequency ωp) which is modulated by the antenna
motion. They have intrinsic power gain associated with the transfer from the antenna frequency
ωa to the higher frequency ωp. A laser interferometer is a parametric transducer operating at
an optical pump frequency. Parametric transducers for resonant-mass readouts may be optical,
microwave or radiofrequency devices.

Most parametric transducers use a high-frequency resonator combined with a low-noise
high-frequency amplifier. Passive transducers use an inductive or capacitive readout, coupled
to a SQUID amplifier. Figure 22 illustrates their basic structure. The passive transducer
illustrated uses a superconducting inductor whose inductance (if constructed in a planar
fashion) is proportional to the gap spacing between the coil and the superconducting ground
plane on the antenna. Relative motion modulates persistent current trapped in the inductor
(since the magnetic flux LI must be conserved). The changing current is detected by a SQUID
magnetometer. The parametric transducer illustrated uses a capacitor in a resonant circuit.
The capacitance is modulated by the gap spacing between the capacitor and the antenna. The
change in capacitance due to motion modulates the resonant frequency of the circuit, creating
modulation sidebands on the output signal. Both types of transducer may use capacitive or
inductive sensing.

Fundamentally, there is little difference between passive and active transducers. Active
transducers use a transduction process that is combined with power amplification but additional
amplification of the high-frequency signal is usually necessary. Passive transducers have a
complete separation between the transduction process and the amplification process. However,
the amplifier itself (such as a SQUID) makes intrinsic use of a parametric up-conversion
process. Thus the difference between passive and active transducers is simply in the choice
of whether the parametric up-conversion occurs during or after transduction. In the case of
an optical pump frequency, amplification is unnecessary: the entire power gain is realized
through the up-conversion of the signal frequency to the optical frequency.

One important difference between passive and parametric transducers is in the transducer
impedance mismatch ratio or coupling factor β. For the parametric transducer

βpara
1

2

CV 2
pQe

mω2
ax

2
. (4.18)

In the limit Qe > ωp/ωa , the electrical Q-factor of the transducer resonator Qe is replaced by
the frequency ratio ωp/ωa .
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Figure 22. Inductance or capacitance is modulated by a gap spacing. (a) Active or parametric
transducer use a low-loss resonant circuit pumped by an external oscillator. (b) Passive transducers
use an inductive or capacitive readout, coupled to a SQUID amplifier. All the circuits are made
from superconducting and very-low-loss components.

For the passive inductive transducer

βpass = 1

2

LI 2

mω2
ax

2
. (4.19)

Note that the passive transducer coupling factor is not enhanced by a Q-factor term. For a
capacitive passive transducer the inductive stored energy 1

2LI
2 is replaced by the capacitive

stored energy 1
2CV 2. The parametric transducer effectively samples the incoming signal Qe

times per cycle up to a maximum value of ωp/ωa , and therefore increases its coupling by the
same factor.

Parametric coupling is reactive as a result of the position-dependent mechanical forces
which act across the electrical resonator. The mechanical forces vary strongly over the
transducer position bandwidth, defined as the halfwidth of the electrical resonator, measured
in terms of displacement. Typically the position bandwidth is ∼pm (10−12 m). The stored
electrical energy exerts forces across the capacitance which vary strongly over the position
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bandwidth. Hence the effective spring constant can be very large, and due to its reactive nature
can create problems in maintaining stability.

The passive transducer does not have the same coupling advantage. However, the
advantage is to some extent illusory because by moving the coupling structure to a high
frequency one reduces its size, so that the absolute value of the L or C is significantly reduced.

The practical problems of the two types of transducer are quite different. Passive
transducers are limited by a poorly understood problem of AC losses in their superconducting
circuits, and the performance of available SQUID amplifiers. Parametric transducers, on
the other hand, are limited by phase noise in the pump oscillator, tuning difficulties, noise
degradation in amplifiers at high microwave power, and sometimes by the effects of low-
frequency seismic noise. All transducers, both active and passive, are limited in noise
performance by the noise of the amplifier with which they are used. In terms of noise number
equation (4.13), at 1 kHz a noise number of 1 corresponds to a noise temperature of about
100 nK, whereas at 10GHz the same performance corresponds to Tn ∼ 1K. In principle, both
types of transducer can reach close to the quantum limit. In practice, none have reached this
level to date, although SQUID amplifiers have been developed close to 1µK, and amplifiers for
microwave parametric transducers have long been available with Tn ∼ 10K. The microwave
parametric transducer on NIOBE at UWA has achieved about 1 mK noise temperature, while
the SQUID transducer on NAUTILUS has achieved similar noise performance. It is not obvious
which type of transducer will ultimately be the most successful.

Johnson and Bocko [106–108] and Tobar et al [100] have presented designs for quantum-
limited microwave transducers, while Richard and the Legnaro group have presented design
for optical transducers [109,110]. See [94,98,111,112] for further discussion of these issues.

A sensitive transducer and a low-loss resonant mass are not sufficient to create a sensitive
gravitational wave antenna. There is a major problem at the interface: mechanical impedance
matching. The impedance mismatch ratio (introduced as the coupling factor β) arises because
the mechanical output impedance of the bar is very high, characterized by the elastic stiffness
of the bar itself, whereas the mechanical impedance of the electric or magnetic field which
couples this motion into the transducer is not large. The solution is to create an acoustic
transformer at the end of the bar. Such a transformer is analogous to acoustic horns used in
loudspeakers, or to the mechanisms in the human ear that couple the motion of the air into the
fluid of our cochlea.

All successful impedance matching schemes have consisted of low-mass secondary
acoustic resonators tuned to the antenna frequency. This creates a two-mode resonator with
a pair of normal modes. The acoustic energy beats between the high-mass resonator and the
low-mass resonator, while the transducer is coupled to the low mass. The scheme can be
generalized to multimode transformers, consisting of nested sets of resonators reducing in
mass by a geometric progression.

Three secondary resonator configurations have been used successfully on antennas:
diaphragms (first developed by Paik at Stanford [113]), mushrooms (developed by the Rome
group [114]) and bending flaps (developed at UWA [115]). Pang and Richard [109], Hamilton
et al [116] and Tobar [63] have proposed and tested 3–5 mode systems but these have yet
to be implemented. Four of the systems are illustrated in figure 23. The antenna NIOBE
uses a 400 g bending flap (figure 23(a)). The bending flap is a convenient form of secondary
resonator, which has open geometry suitable for an attachment of a microwave re-entry cavity
parametric transducer readout. The microwave readout system consists of a carrier suppression
interferometer, and a microwave amplifier followed by a demodulation stage. This achieves
reasonably high coupling to the microwave transducer, as demonstrated by the fact that the
elastic forces provided by the transducer are sufficient to detune the mechanical oscillator by
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Figure 23. Bar antenna transducer readout systems. (a) Bending flap [115]; (b) mushroom [114];
(c) diaphragm [113]; (d) multimode transducer [116].

several Hz. The following three configurations, (b) the mushroom, (c) the diaphragm and (d)
a multimode transducer, use similar SQUID amplifier readout circuits. The moving mass
modulates the inductance of a flat coil, which by flux conservation leads to a modulated current
through a SQUID amplifier. The Rome group has used capacitive readout for a mushroom, in
which case currents are induced by charge conservation in capacitor. The multimode transducer
uses a massive ‘diaphragm’ coupled to a small tertiary mass plate supported by small niobium
cantilever springs.

4.5. Antenna materials

An ideal resonant bar would consist of a piece of nuclear matter, with high density and a velocity
of sound comparable to the velocity of light! Since this is not available except in neutron stars,
we must find a form of molecular matter which, to maximize coupling to gravitational waves,
combines high velocity of sound vs , and high density ρ. To reduce the thermal noise we require
a low acoustic loss Q−1.

For an antenna limited by thermal noise the best antenna material (at a practical frequency)
will have the largest value ofQρv3

s . This quantity is proportional to the ratio of energy absorbed
(∼ρv3

s ) and the thermal noise in the antenna (∼Q−1). Of the three controlling parameters, only
the Q-factor can be modified significantly in a particular material, depending on its preparation
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Figure 23. (Continued)

and suspension.
Table 2 lists the values of ρ, vs and ρv3

s for various materials, along with the maximum
achieved Q-value to date, and the signal-to-noise ratio figure of merit, Qρv3

s . The table
shows that nearly one order of magnitude improvement is obtained (at a given frequency) in
ρv3

s by changing from aluminium or niobium to sapphire, and when the Q-factor is included
the very low losses in sapphire make it about 500 times superior to Nb or Al (at a given
operating temperature). Silicon is more than 100 times better than Nb and Al. Unfortunately,
at present silicon and sapphire are not available in sufficiently large masses for these apparent
advantages to be useful. Note that a lowerQ-factor can always be compensated for by sufficient
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Table 2. Comparison between antenna materials.

ρv3
s Qρv3

s

Material ρ(g cm−3) vs(km s−1) Q (1013 kg s−3) (1020 kg s−3)

Aluminium 2.7 5.1 5 × 106 36 18
6061
Aluminium 2.7 5.1 7 × 107 36 250
5056
Niobium 8.57 3.4 2.3 × 108 34 800
Silicon 2.33 8.5 2 × 109 140 2.8 × 104

Sapphire 3.98 9.4 3 × 109 330 105

Lead 11.36 1.1 1.5
Tungsten 18.8 4.3 150
Copper(94)/Al(6) 8.0 4.6 2 × 107 77.8 155

cooling, so that fundamentally only theρv3
s term need be considered. Copper-based alloys have

been selected as preferred materials for very-high-mass spherical antennas, chiefly because
superconducting materials (for which the thermal conductivity becomes very low) are very
difficult to cool to ultralow temperatures.

For comparison, table 2 also shows lead and tungsten. Lead is very poor, because of its
low sound velocity, whereas tungsten is comparable to silicon. If massive high-Q tungsten
masses could be obtained, they would have the significant advantage that the cryogenic system
necessary to house the antenna would be smaller (and cheaper and simpler) than that needed
for lower-density materials.

4.6. Antenna suspension and isolation systems

Typical seismic noise has the spectrum of xs = αf −2 m Hz− 1
2 in the frequency range 1 Hz to

a few kilohertz, where f is the frequency and α is a constant. Measurements by gravitational
wave research groups at various sites have shown that the constant varies between 10−6 and
10−9 (e.g. [117–119]). A vibration isolation system is needed to isolate seismic noise to well
below the signal level at the antenna resonant frequency. A variety of metallic suspensions have
been developed for resonant gravitational wave detectors (e.g. [120–122]). All are designed to
have the normal-mode resonant frequencies of the isolator well below the antenna frequency,
and the internal modes of the isolator elements above the frequency range of interest. In
general, the normal modes define a set of low-frequency resonances. Internal modes of the
mass and spring elements are generally at high audio frequencies. Such isolators therefore
have good isolation above a low-frequency corner, and also below the high-frequency internal
resonances. For resonant-bar antennas, the isolation band required is from a few hundred hertz
to a few kilohertz. In principle, it is fairly easy to realize a mechanical isolator which will
attenuate the seismic motion at 1 kHz (∼10−12 m Hz) by 1010 (e.g. [121, 122]). However,
practical problems such as nonlinear up-conversion can degrade the performance [123].

Figures 24 and 25 illustrate two of the resonant-bar antennas constructed to date. For
antennas operated at 4 K the bar is supported by a low-loss multistage suspension in an
experimental chamber with which the antenna has no direct contact. A room temperature
vibration isolation stage suspends the cryogenic suspension stage. In the case of NIOBE,
vibration can only act on the antenna by traversing the entire 18 stages of vibration isolation,
or through transmission through the residual gas in the experimental vacuum. There are
no wires connecting to the antenna (which can transmit vibration) because the transducer is
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Figure 24. Cross section of the NIOBE antenna. The cryostat is 5 m long and 3 m high.

Figure 25. View of the ultracryogenic antenna AURIGA showing cryogenic shields and the Al
bar.

interrogated entirely by radiative contact. In the case of antennas using passive transducers
superconducting cables can act as transmission lines to conduct vibration, so that great care
must be taken to isolate cables using Taber isolators [124], consisting of additional mass spring
stages (using thin wires as springs) to which the cables are bonded.
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The cryogenic suspension and isolation stage of an antenna is one of the most critical
components. It must isolate against the noise which bypasses room temperature isolation, as
well as the thermal noise of the room temperature stage. In addition, it must suspend the antenna
using low-loss elements so as to maintain a high antenna quality factor. It is essential that the
cryogenic stage, at least, does not have any resonant modes near the antenna frequency. Several
different systems have been used with reasonable success. Traditionally, cable suspensions
have been used: a cable slung around the belly of the resonant bar. This method has the
risk of introducing vibration by the violin string mechanism: slip–stick frictional transitions
associated with the motion of the belly cable at the point of tangential contact with the bar.
This process arises because of the seismically driven low-frequency pendulum motion of the
bar. Such boundary condition effects can be avoided if the antenna is somehow bonded or
clamped to the bar at the tangent point. The now defunct Stanford group and the LSU group
used welded rods instead of wires to avoid this problem. The third method consists of a
cantilever suspension. High Q-factor curved cantilever springs such as the Catherine wheel
used on NIOBE support the bar from below. This can have well defined contact points to the
antenna to minimize nonlinear processes, and has given the highest Q-factor ever observed in
a metal [125]. A fourth method, first suggested by Coccia [126], is the use of a nodal point
suspension. In the case of a bar or sphere, the nodal point for the fundamental mode is located
at the centre of mass. This means boring a hole to the centre and attaching a rod or cable.
While this has many advantages in reducing sensitivity to external noise, it has not been used
in a full-scale antenna.

Antennas cooled to ultracryogenic temperatures (below 100 mK) have a particular problem
to contend with. Helium exchange gas can no longer be used at such temperatures (the vapour
pressure is too low) so the antenna must be cooled by conduction. This means that there must
be direct cryogenic conduction paths to the antenna from the dilution refrigerator. Pure and
nonsuperconducting metals must be used (such as OFHC copper). Yet the thermal conduction
must exist without significant vibration conduction, especially since the dilution refrigerator
is likely to be a substantial source of vibration.

Ultracryogenic detectors used to date have exhibited excess sensitivity to local vibration,
due presumably to the inadequate performance of the thermal conduction/vibration isolation
system. However, recently both NAUTILUS and AURIGA have yielded improved
performance, down to a noise temperature of 1 mK.

4.7. Present status of resonant-mass detectors

At the time of writing five resonant-mass gravitational wave detectors are in operation. These
consist of three liquid helium temperature detectors, ALLEGRO, EXPLORER and NIOBE
at Louisiana State University, CERN (operated by the University of Rome Group) and the
University of Western Australia, and two ultracryogenic detectors, NAUTILUS and AURIGA
at INFN Frascati and INFN Legnaro, Italy. The latter detectors have been successfully cooled
to below 100 mK. Table 3 below summarizes the basic parameters of these antennas. The noise
performances quoted are typical/best rms noise levels for the detection of broadband bursts.

As well as undertaking long periods of operation, the antennas are all in the process
of upgrade, either through installation of improved transducers, or through installation of
improved vibration isolation. Due to the large size of the cryogenic systems, resonant antennas
have a rather long cycle time (several months) of cooling and warm-up. Combined with the
probability of malfunction in experimental apparatus (a particular problem during the 1980s)
the rate of progress has been slower than predicted.
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Table 3. The resonant mass detectors which belong to the international Gravitational Events
Collaboration.

Noise Frequency Strain
Antenna Location Material Temperature Temperature (mK) (Hz) sensitivity

ALLEGRO Baton Rouge Al 4 K 6 900 7 × 10−19

EXPLORER CERN Al 2 K 6 900 7 × 10−19

NIOBE Perth Nb 5 K 1 700 5 × 10−19

NAUTILUS Frascati Al 100 mK 4 900 6 × 10−19

AURIGA Legnaro Al 100 mK 1 900 3 × 10−19

4.8. Performance of resonant bars

The long-term operation of cryogenic resonant bars has been invaluable in characterizing their
instantaneous performance, and evaluating various possible filtering techniques for extracting
events from a long data record in the presence of excess noise. With regard to instantaneous
performance it has been important to verify that the noise performance is consistent with the
noise parameters of the bar, transducer and readout system. In nearly all cases extremely
good agreement has been obtained, such as illustrated in figure 26. In the case of parametric
transducers their performance can be characterized not only by noise spectra, but also by their
variable interaction with the antenna, as discussed in section 4.5.

From the experimentally observed noise spectral density, such as figure 26, one can
determine the sensitivity of the antenna to various signals such as stochastic background,
CW signals and bursts. Figure 27 shows the calibrated burst sensitivity of NIOBE during a
24 h period. The data are presented as mean noise temperature (bottom curve) and the largest
noise temperature observed in 100 s. This allows the antenna performance to be quickly
assessed, including the presence of excess noise. Figure 28 presents the same data in the form
of Brownian motion noise histograms. From the single antenna data there are clearly few
events above 10 mK, corresponding to h ∼ 10−15 (all of these could normally be eliminated
by coincidence analysis.

The resonant-bar detector network has recently been able to set new upper limits to
the strength and event rate of gravitational wave burst signals from coincidence analysis of
three- and four-antenna data. Figure 29 shows this result in comparison with previous upper
limits [127].

We saw in section 4.2 that the noise energy for burst detection is reduced by the factor τi/τa ,
where τi is the signal integration time and τa is the antenna ring-down time. The reduction of
the noise with τa is a manifestation of the fluctuation dissipation theorem. In the case of CW
signal detection the noise energy reduces proportional to (τiτa)

−1. This means again that the
best detector is one with very high Q-factor, and that very long integration times improve the
amplitude sensitivity as τ

1/2
i . Figure 30 presents an FFT analysis of one month’s data from

the ALLEGRO detector in the search for pulsar signals form the globular cluster 47 Tucanae.
In this case the deep integration, over a narrow frequency band, has set limits for CW pulsar
signals ∼10−23. The analysis has been repeated for various directions in the two low-noise
bands of ALLEGRO.

For the detection of stochastic backgrounds one simply has to multiply the output of two
nearby detectors and integrate the result. However, as discussed in section 3, the detectors
need to be sufficiently close that the incoming waves are correlated. Their space should be
within about λ/3 where λ is the gravitational wave wavelength c/f . Cross correlation between
the detectors NAUTILUS and EXPLORER (as mentioned in section 3) have yielded a limit to
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Figure 26. The measured strain noise of ALLEGRO, shown as the irregular trace. The various
noise contributions estimated from the noise model are shown as smooth curves. The noise is
dominated by the SQUID’s wide-band and the transducer’s narrow-band noise [71].

Figure 27. The calibrated burst sensitivity of NIOBE during a 24 h period. The data are presented
as mean noise temperature (bottom curve) and the largest noise temperature observed in 100 s [78].
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Figure 28. Histogram of the noise of NIOBE after optimal filtering for burst signals, showing the
expected Boltzmann distribution. When the weighted mean of both normal modes is evaluated the
overall system noise temperature is 0.89 mK.

Figure 29. The rate of burst events versus strain amplitude set by one-two-three- and four-antenna
experiments. The 4-antenna result is based on a short period of data and hence has weaker
significance.
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Figure 30. Search for narrow-band continuous waves from possible pulsars in 47 Tucanae [71].
Over about 1 Hz range no CW signal is visible above a strain amplitude ∼10−23.

stochastic gravitational waves of ∼10−22 at 900 Hz. The results achieved were limited because
the detectors were too far apart. Vitale et al [128] have shown that NAUTILUS and AURIGA
can be expected to achieve improvement of more than two orders of magnitude over this figure.
However, they should be located within about 100 km of each other to achieve best sensitivity.
This would bring the sensitivity to within the range of possible stochastic signals from the era
of early star formation.

4.9. Multiple antenna correlation

In the future we can expect detailed correlation experiments to take place between a worldwide
array consisting of both resonant-mass and laser interferometer gravitational wave detectors.
The analysis would take into account the relative amplitude of the signals observed by detectors
with different orientations relative to an incoming signal, and the phase delay due to the
propagation time of signals through the Earth. Such a combined analysis would allow source
direction and polarization to be accurately determined. Today we are still far from achieving
this goal. Here we will discuss the analysis performed to date on data from a far less optimal
array.

Besides seismic noise excitation, all cryogenic antennas have shown evidence of excess
noise of indeterminate origin [81], as mentioned in section 3. Low noise performance may be
achieved for considerable periods of time; but interspersed are periods of excess noise which
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is not identifiably correlated with known noise sources. This can degrade performance by
many orders of magnitude. While there are opportunities (as discussed above) for nonlinear
up-conversion driven by low-frequency pendular modes, and also for thermal-stress-driven
excitation as regions of the cryostat vary in temperature, no firm correlation is generally
apparent. Thus the seismic, acoustic, electromagnetic pulse and cosmic ray shower detectors
that are generally used to discriminate possible noise signals are not sufficient to eliminate
excess noise, and much careful work still needs to be done. It has been shown that at a noise
temperature of ∼1 mK about 2 cosmic ray events will occur per day, and this increases to
103 events per day at the 1 µK noise sensitivity [129]. The Rome group has convincingly
demonstrated the presence of cosmic ray excitation events in their data [130].

Multiple antenna coincidence correlation can minimize the effects of excess noise, as
demonstrated by many coincidence experiments (e.g. [131]), which sets new lower limits on
the gravitational wave flux. When four or more antennas are operated in coincidence the rate
of accidental coincidences becomes extremely small, as we discuss further below.

Candidate gravitational wave events consist of either unknown environmental
perturbations, occasional rare Gaussian high-energy excursions, and possibly real gravitational
wave signals. These may be idealized as an independent set of background events, occurring
at a constant rate R per unit time. There is evidence that the background events are not entirely
independent but to some extent are clustered. This can occur if a local vibration source acts
over a period of time. In spite of this, the data are generally well described by a Poisson
distribution.

The probability of a background event in one antenna during the antenna resolving time
τr is given by

P1 = Rτr . (4.20)

Now if there are N independent antennas, the probability of accidental coincident excitation
of all N antennas in a coincidence window τc that must always satisfy τc � τr , is given by the
product

PN = τN
c

∏
i=1,N

Ri. (4.21)

If we simplify by assuming that all antennas experience the same background at the rate R,
equation (4.21) becomes

PN = RNτN
c . (4.22)

From this it follows that the mean number of accidental coincidences during a coincidence
experiment of duration ttot is given by

Nac = RNτN−1
c · ttot. (4.23)

Table 4 summarizes the mean number of accidental coincidences for experiments with one
or more detectors, assuming various coincidence windows. The coincidence window depends
on several factors. It cannot be smaller than the poorest clock precision of the detectors in the
experiment. Second, it depends on the timing resolution of the optimal filters in the antenna
readout. The latter depends on the signal size, but for the typical thresholds used to extract
candidate events it is about 0.1 of the optimum integration time. At the improved antenna
sensitivity expected in the near future, cosmic ray events could produce one event per 100 s
(103 events per day). To detect rare events such as gravitational waves from supernovae in our
Galaxy, we should be looking for Nac < 1 in any coincidence experiment. The probability that
a single coincidence is accidental is given roughly by the value of Nac (for Nac less than 1).

Table 4 emphasizes that multiple antenna operation is essential to reduce the background
coincidence rate. Two-way coincidence experiments to date have been meaningful because
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Table 4. Mean number of accidental coincidences for R = 10−2 s−1 in a four-month (107 s)
coincidence experiment.

Coincidence window (s)
Number of
antennas 1 0.1 0.01 0.001

1 105 105 105 105

2 103 102 10 1
3 10 0.1 10−3 10−5

4 0.1 10−4 10−7 10−10

5 10−3 10−7 10−11 10−15

R < 3 × 10−4 has usually been achieved. At the increased rate of candidate events expected
due to cosmic rays as sensitivity improves towards h ∼ 10−20, it will be difficult to obtain
significant data unless at least three detectors are used, or else if separate vetos can eliminate the
cosmic rays themselves. The very low probability of accidental coincidences achievable with
four- and five-antenna arrays apparent in table 4 demonstrates that with high time resolution
it is possible to eliminate a substantially larger background than the assumed value of R. For
example, even if R was increased to 1 s−1, the probability of a five-way accidental coincidence
using the smallest assumed window is 10−5 in a four-month experiment. Note that if the
antennas have different resolving times, the τc used in equation (4.23) must be greater than the
longest resolving time.

The issue of multiple antenna coincidences is not as simple as indicated above due to
the fact that the antennas have varying orientations on the surface of the globe. The angular
dependence of the signal S observed in a single resonant-bar antenna is given by

S(θ, φ, ε) = (0.5(1 − ε) + ε cos2 2φ) sin4 θ, (4.24)

where θ is the angle of the incoming plane wave relative to the cylinder axis of the antenna,
and φ is the polarization angle of the wave measured relative to the plane of the antenna and
the source. The polarization fraction ε measures the fraction of linear polarization of the wave.
For ε = 0 the wave is circularly polarized, whereas for ε = 1 the wave is 100% linearly
polarized, with polarization angle φ.

To assess the probability of multiple antenna coincidences we must investigate the antenna
pattern of a set of antennas on the globe. Since all antennas are horizontal, their orientation
with respect to the sky is largely determined by their locations on the Earth, and considered as a
whole this leads to a complex antenna pattern when the responses S as given by equation (4.24)
are combined into a synthetic multiple antenna pattern. Antenna patterns for one and two
resonant-bar antennas have been analysed by Frasca [132] and Nitti [133]; Blair and Frasca
et al have analysed multiple antenna arrays [134], while Schutz and Tinto [135] have analysed
antenna patterns for pairs of laser interferometers.

An analysis of antenna patterns for the geographical locations of four antennas [134] shows
that four antennas are sufficient to obtain near-100% sky coverage for two-way coincidences.
That is, if we are content with only two antennas being suitably aligned for a random source, we
can observe practically 100% of the sky. On the other hand, if we are to demand four-antenna
coincidences then we require the antenna orientations to be adjusted such that they optimally
search the same part of the sky, and the sky coverage is reduced to about 50%. With eight
operating antennas one can achieve near-100% sky coverage and a minimum of four antennas
in coincidence for any one event. Note, however, that since spherical antennas have 100% sky
coverage, such an eight-antenna array could be replaced by three or four spherical antennas,
thus avoiding the sky coverage problem.
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We now return to the practical problems of the existing array of bars. We have seen that
the presence of local sources of background noise lead to the minimum detection requirement
that a two-antenna zero time delay coincidence be observed. With unknown source direction
we can apply no constraint on the signal based on the relative size of the signal observed in
each antenna. However, it is possible to utilize the fact that the rotation of the Earth causes
the antenna sensitivity to be strongly modulated for specific source directions. For example,
it may be reasonable to consider that the nearest sources (such as coalescing black holes) will
be concentrated near the galactic centre. Under this assumption one can reject data when the
antenna sensitivity in this direction (defined by equation (4.24)) is below some predetermined
value. Due to the sin4 θ factor in equation (4.20) this provides a rather steep angular cut-off
and in practice one can eliminate ∼50% of data by applying such a direction filter. This
automatically reduces the number of accidental coincidences (since these occur randomly in
sidereal time) and increases the statistical significance of any zero time delay excess). Such a
procedure is statistically dangerous, however. The reason for this is that there will always be
some direction in which an apparent excess is statistically significant. The direction and the
cut-off threshold must always be preset before the analysis.

A second means of improving the statistical significance of the data rests on the fact that
the energy distribution for true signals (such as gravitational waves or calibration pulses) is
different from the distribution of excess noise events. This is easy to verify experimentally.
Astone et al [136] have shown that the energy resolution achievable in a typical resonant
bar with a threshold for candidate events about 10 times the mean noise energy is uncertain
within a range typically 0.3–3 (for signal energy = 1). This uncertainty has been verified
experimentally, indicating that the use of relative amplitudes to determine source direction
can only be used effectively at large signal-to-noise ratio [137]. While this energy spread is
large, the energy spread of accidental coincidences is always much larger, typically spanning
up to two orders of magnitude. This follows immediately from the high effective temperature
of the excess noise distribution (see figure 17). As a result one can apply an energy ratio
filter to coincidence data, thereby eliminating from consideration any coincidences for which
the energy ratio exceeds a predetermined value. (This depends on the relative orientation
of the detectors, and on their excess noise distribution.) Appropriate criteria can be set for
such filters based on the measured distribution of non-true-time coincidences. In practice this
scheme allows about 50% of the total coincidences to be excluded, again allowing substantial
improvement in the statistical significance.

In an unpublished NIOBE–EXPLORER coincidence experiment a total of about 25 zero
time delay coincidences was reduced to a total of seven coincidences by the application of both
an energy ratio filter and a galactic centre direction filter. This figure was substantially above
the background, but timing uncertainties and the fact that these filters were developed during
the data analysis period ruled out attribution of statistical significance to the result. If it had
been a blind experiment and there had not been timing uncertainties the probability of the zero
time delay peak occurring by chance would have been improved from ∼0.01 to ∼3 × 10−4.
Future experiments can utilize one or both of the above filters to improve statistics. It is a
technique that is likely to be applicable in the search for burst sources in laser interferometer
detectors.

4.10. Future prospects

4.10.1. Spherical gravitational wave detectors. Spherical gravitational wave detectors have
been analysed extensively by Coccia and co-workers [138–143], Johnson and Merkowitz [34,
144], Zhou and Michelson [145] and Stevenson et al [146–149]. A spherical detector consists



1378 L Ju et al

of a large approximately spherical mass instrumented with five or more transducers to read out
the orthogonal quadrupole modes and the gravitational wave insensitive monopole mode. Such
a detector has a high cross section for gravitational waves and omnidirectional sensitivity. A
spherical detector can be suspended close to its centre of mass to achieve quite good decoupling
of the suspension from the antenna normal modes. This cannot be perfect however, because of
another problem: the matching of transducers to the large normal mode masses. All operating
resonant-bar transducers use a secondary resonator to match the antenna normal mode mass
(about one tonne) to the transducer (see section 4.4). Typically, the secondary resonator (such
as the UWA bending flap, figure 23) has a mass of several hundred grams. This is roughly the
maximum mass that can be coupled to existing transducers with electromechanical coupling
coefficient in the range 1–10−3.

In the case of a 100 tonne sphere aiming for high sensitivity to bursts in the kHz range,
the impedance matching problem is more complex. The maximum effective bandwidth of a
two-mode system is set by the beat frequency between the two normal modes. This is given
by 	f = f0(M1/M2)

1/2. For a 1000:1 mass ratio this represents a bandwidth of 3%. Since
bandwidth translates directly into burst sensitivity, it is necessary to reduce this ratio, which
can best be done with a multistage impedance matching network. A reasonable choice is a
factor of about 30, which gives a fractional bandwidth of ( 1

30 )
1/2, or about 18%. However,

to match to a transducer using such mass ratios between a 50 tonne normal mode mass and a
50 g transducer coupling mass requires the use of four stages, with the second-stage resonator
exceeding 1 tonne, a third-stage resonator of tens of kilos, coupled to the final low-mass
transducer stage. The sphere becomes a rather hairy sphere, possessing not five fundamental
quadrupole modes that couple to gravitational waves, but 20. Care must be taken that there are
no adverse couplings between the normal modes, since perfect orthogonality will be difficult
to achieve in such a complex structure. Negligible cross-coupling can easily be achieved by
deliberately choosing coupling mass parameters such that all modes are offset from each other
by a few Hz.

A scheme for creating some of the additional resonators required on a sphere is illustrated in
figure 31. It makes use of bending flaps, which have the advantage that they have low surface-
to-mass ratio (to minimize surface losses), simple geometry for fabrication, and minimum
wasted volume. The first intermediate mass is realized by simple machining of the sphere.
The second could be welded or cast in situ, or it could also be cut from the first intermediate
mass by suitable machining (the latter would save more space but has been omitted in the figure
for clarity). Just two of the necessary five resonator structures are shown here. This design
concept ensures that the antenna and most of the impedance matching system can be fabricated
with complete mechanical integrity, thus avoiding unmodelled losses from bolts or glue joints.
Here it is worth pointing out that the presence or absence of cylindrical symmetry is not an
issue in antenna design, as demonstrated in the NIOBE bending flap at UWA. For large mass
ratios the symmetry breaking creates a very small torsional reaction at the suspension point,
which could only modify losses if the suspension itself had very large differences in acoustic
losses for different degrees of freedom. In reality, suspension systems must be designed to
isolate all linear and rotational degrees of freedom since intrinsic cross-coupling always occurs,
determined by the Poisson ratio which has a value ∼0.3 in all pure homogeneous materials.

The final transducer stage on a spherical antenna can follow the noncontacting microwave
parametric transducer concept to avoid the need for cable isolation and save space in the
ultracryogenic volume. The transducer could be a sapphire transducer [150–152] or it could
be a superconducting re-entrant cavity, as shown in figure 23. For ultralow-temperature
applications it is necessary that the transducer have low power dissipation, generally below 1–
10 µW. This requires the transducer losses to be lower than niobium transducers demonstrated
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vibration isolation

(a)

Figure 31. (a) A 100 tonne spherical antenna with two of the five cuts required to create ∼1 tonne
secondary resonators to readout the orthogonal normal modes. To each secondary resonator is
bonded a bending flap ∼30 kg to create the third normal mode of the impedance matching network.
The fourth resonator (too small to show here) would consist of an additional bending flap of mass
∼50 g. A parametric transducer could read out such an antenna using radiative coupling thus
avoiding vibration coupling through wires. (b) [153] Noise performance of a similar spherical
detector. Curves A–E show the increasing bandwidth as the number of secondary resonators
increased from 1 to 5 respectively.

so far. However, this can easily be achieved by using a larger gap spacing, and a frequency
below 10 GHz. In the case of sapphire transducers, sideband pumping allows the dissipated
power to be reduced below 1 µW. Figure 31(b) [153] shows that broadband noise performance
∼250 Hz can be achieved with a four-mode transducer on a large sphere. The bandwidth is
significantly degraded as the number of modes is reduced.

At the transducer it becomes necessary to make a materials transition from the Al or Cu–
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Al antenna material, to niobium or sapphire. No definitive solutions for such transitions have
been defined, but shrink fitting (by thermal differential contraction), glue bonding or brazing
are likely to allow suitably low-loss assembly. It will be important to develop bonding systems
in small-scale tests before construction of large-scale spheres.

Spherical detectors cooled to ultralow temperatures can offer difficulties in cooling due
to their small surface-to-mass ratio. Frossati has determined that forced convective cooling is
essential if the cooling time is to be reasonable. If the material is superconducting, thermal
conductivity freeze-out makes this a much more severe problem. For this reason Cu–Al and
Be–Cu have been proposed for the antenna material.

4.10.2. Arrays of small high-frequency detectors. A part of the gravitational wave spectrum
that has had insufficient attention is the high-frequency band between 2 and 20 kHz. In this
band one expects gravitational waves from stellar mass black hole formation and their normal
modes. At high frequencies, laser interferometers lose sensitivity due to shot noise, while
resonant-mass detectors lose sensitivity due to the smaller size required for such high resonant
frequency. Frasca and Papa [154] has proposed a solution consisting of phase coherent arrays of
short stumpy antennas, designed so that that all five lower quadrupolar modes (the longitudinal
mode, the two discoidal modes and the two ‘pantograph’ modes) have comparable quadrupole
moment and sensitivity. Using five transducers, such stumpies can be read out similarly to the
five quadrupole modes of a sphere, and thus have omnidirectional sensitivity. In principle, the
total energy sensitivity increases linearly with the total detector mass, so that an array can be
enlarged arbitrarily by simply adding additional identical elements.

Whereas a large sphere achieves high sensitivity in a single device, but at the expense of a
rather low resonant frequency, the array of stumpies is claimed to achieve the same sensitivity
at an arbitrarily high frequency, chosen by astrophysical considerations. It can have cost
advantages too, through replication of identical elements.

Such an array obviously requires the individual elements to be sensitive to the same part
of the spectrum. However, with adequate impedance matching the stumpies should have
bandwidth ∼15% similar to that achievable in spheres and bars. This means that there is
minimal difficulty in tuning individual detectors.

However, the practical limitations to achieving high sensitivity, such as the limits imposed
by noise, have yet to be demonstrated. Further research in this area would be very valuable,
including an in-principle demonstration of the concept using calibration signals. The array of
stumpies provides an opportunity to achieve great increases in high-frequency sensitivity in the
future, but will probably not be implemented until positive results are obtained with existing
detectors, or astrophysics provides a very strong justification for improved high-frequency
sensitivity.

4.10.3. Transducer developments and prospects. The implementation of improved
transducers and impedance matching structures is essential to increasing the bandwidth and
burst sensitivity of resonant-mass detectors. Successful transducers have been developed
based on capacitative or inductive modulated superconducting circuits with RF or DC SQUID
amplifiers, as well as microwave parametric transducers based on superconducting cavities
and cryogenic GaAsFET amplifiers. Both systems have comparable sensitivity and a variety
of advantages and disadvantages.

The sensitivity of a SQUID-based transducer depends on the SQUID noise performance,
and on the mechanical and electrical quality factors of the superconducting elements. A
persistent problem has been AC electrical losses in the niobium superconducting coils used for
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sensing and coupling transformers in passive transducers. It has sometimes been difficult to
obtain sufficient trapped persistent current in inductive sensing circuits, and sufficient electric
field across capacitative sense elements. AC losses introduce thermal noise, while low current
or electric field reduces the forward transductance, reducing the electromechanical coupling
and increasing the antenna noise temperature.

A critical factor for SQUID transducers is the SQUID noise. Recently there has been
progress in this area. Two groups have created SQUIDs with noise measured to be below
about 30h̄, one to two orders of magnitude better than commercial devices. However, recent
results [155] indicate that noise is degraded in a transducer environment due probably to trapped
flux.

Parametric transducer performance also depends on the mechanical and electrical quality
factor of the transducer structure. This is less of a problem however, since the simpler
mechanical structures used have shown Q-factors ∼107, and electrical Q-factors ∼105–106,
both of which are high enough to be negligible noise sources at current sensitivity. Microwave
amplifiers have for many years been shown in radio astronomy to have near-quantum-limited
noise, but in the only successful such implementation the amplifier noise contribution is in
excess of this [156]. Critical to achieving excellent amplifier noise is very low signal levels,
requiring excellent carrier suppression, since otherwise pump power reflected from the cavity
greatly exceeds the signal sidebands.

Another critical problem is pump oscillator phase noise. The NIOBE transducer required
an ultralow phase noise microwave oscillator to be especially developed.

To achieve sensitivity near to the quantum limit with a parametric transducer will require a
higher Q-factor electrical resonator and a lower noise pump oscillator. Fortunately, oscillators
30 dB better than that used on NIOBE have now been developed, and a sapphire transducer
with mechanical and electricalQ-factor exceeding 108 should allow this technology to advance
to within a factor ∼30 of the quantum limit [100, 152, 157].

4.11. Vibration isolation and suspension developments

The vibration isolation and suspension system for resonant-mass detectors has always consisted
of both room temperature and cryogenic isolation stages such as those discussed above. In
the case of ultracryogenic detectors there has been greater emphasis on cryogenic isolation
but careful isolation of the cryostat structure itself has been necessary to prevent local
disturbances. It is tempting but incorrect to consider the vibration isolation problem solved,
since improvements of more than 1000-fold in energy sensitivity are projected, and already
detectors show signs of inadequate isolation. In the case of NIOBE there are signs of variable
noise temperature by about a factor of two which is observed as degrading mode temperature
without change to the wideband noise. Sometimes diurnal variations associated with human
activity are observed. This can be understood as arising from vibrational short circuits, perhaps
due to a small piece of superinsulation or whiskers of solid air crossing the narrow spaces in
the radiative cooler in the suspension tube, or residual conduction through the low pressure
(10−5 torr) gas in the experimental volume.

EXPLORER is operated at 2 K, below the helium superfluid transition to eliminate the
vibrational effects of boiling liquid helium, which otherwise causes degraded performance.
NAUTILUS operates well only when local activity is low, again indicating inadequate vibration
isolation. Thus it appears that all currently operating detectors are operating close to a vibration
isolation limited noise floor, at which improved antennas and transducers will not provide the
anticipated noise advantages.

In principle, isolation can be easily improved by further isolation stages, such as the
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cantilever spring stages used at UWA. However, short circuits can easily occur, especially
through unmodelled resonances in components such as masses, springs or wires, which can
cause catastrophic degradation of performance. Not only great care, but excellent design and
deep understanding of complex mechanical structures is essential. One point in favour of
advanced detectors such as spheres is the advantage of near-nodal-point suspension achieved
using centre of mass suspension [126], which can improve isolation by 40–60 dB depending
on the proximity of the suspension point to the node. As already emphasized, this can never
be perfect due to the finite size of suspension elements and the multimode nature of detectors.

4.12. Conclusion

Resonant bars have been brought to a high level of development. There is now an excellent
understanding of the technology and clear proposals for substantial future advances. In
particular, it is likely that large spherical detectors will be found to be the best solution for
obtaining high sensitivity in the 1–10 kHz range. Meanwhile, an extremely vigorous research
effort in laser interferometer detectors is underway, as discussed in the next section.

5. Interferometer detectors

5.1. History

The Michelson interferometer has long been known as an extremely sensitive instrument to
measure length changes. The idea of using a laser interferometer as a gravitational wave
detector was suggested as early as the 1960s [65, 158] and experimentally investigated in
the 1970s [66, 159, 160]. But the first experimental attempt, giving high sensitivity to the
displacement of test masses was due to Forward [161]. Forward used a retro-reflector to
reflect a beam to a beamsplitter and used active control for locking the interferometer to a
fringe. He obtained a spectral strain sensitivity of 2 × 10−16 Hz− 1

2 . The state of the art in
sensitive interferometers at the time of writing is represented by three prototype instruments
of 10 to 40 m in arm length. These are at Garching [162], Glasgow [163] and CalTech [164].
The 30 m delay line interferometer at Garching has achieved test mass differential position
sensitivity of 2.5 × 10−18 m Hz− 1

2 dominated by shot noise between 1 and 6 kHz. The 10 m
Fabry–Perot interferometer at Glasgow has reached ∼7×10−19 m Hz− 1

2 from 500 Hz to 3 kHz
and is close to being limited by shot noise. The 40 m Fabry–Perot interferometer at CalTech has
achieved its best displacement sensitivity of 3 × 10−19 m Hz− 1

2 near 450 Hz. The broadband
noise background (neglecting the narrow peaks which can be removed by appropriate filtering
of the data) between 300 and 1000 Hz gives a rms differential displacement of less than 10−17 m,
corresponding to an rms gravitational strain noise level of 2 × 10−19 which is comparable to
the sensitivity of current resonant-bar detectors.

In pursuit of increasing the interferometer sensitivity, several optical schemes have been
invented. Power recycling, proposed by Drever [165], reuses the otherwise unused laser power
from the interferometer bright fringe. The light is reflected back towards the beamsplitter,
thus increasing the total light power entering the interferometer. Dual recycling proposed
by Meers [166] allows both laser power and signal power to be recycled, thus increasing
sensitivity at the expense of signal bandwidth. Various other schemes such as synchronous
recycling [165], detuned resonant recycling [167], and resonant sideband extraction [168,169]
provide various advantages. In general, recycling schemes allow high power built-up in the
interferometer arms (which may or may not contain optical cavities) to increase the sensitivity
while controlling the signal sideband storage time to maintain detection bandwidth.
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Figure 32. Simple Michelson interferometer.

Power recycling has been demonstrated on both tabletop [170–172] and suspended
interferometers [173, 174] with success. Power recycling factors of 300 and 450 have been
achieved [173, 174]. The broadband and tuned signal recycling has been demonstrated
on tabletop by ANU group [175]. Dual recycling has been tested experimentally by both
Glasgow [176] and Max Plank groups [177].

Long-baseline detectors are under construction at: Hanford, Washington and Livinston,
Louisiana, USA (American LIGO project) [32], Pisa, Italy (3 km Italy/France VIRGO
project) [178], Hannover, Germany (600 m British/Germany GEO project) [179] and Tokyo,
Japan (300 m TAMA project) [180].

During the past few years the development of diode-pumped Nd:YAG lasers and ultralow-
loss optical coatings has offered greatly improved performance in laser interferometer devices.
Nd:YAG lasers are intrinsically stable and efficient. Low-loss coatings (for mirrors working in
the infrared frequencies) offer very high recycling gain. Development of polishing techniques
for sapphire means that improved material less susceptible to thermal lensing is becoming
available. New ideas in suspension and isolation means that it appears likely that future
interferometers need only be limited by fundamental limits, while there remains substantial
room for future advances.

5.2. Configurations

5.2.1. Simple Michelson. A simple Michelson interferometer detector is shown schematically
in figure 32. The interferometer consists of three ‘free masses’—one beamsplitter, and two
test masses at right angles to form the end mirrors. These masses are vibration isolated and
suspended so that at frequencies well above resonance they can move freely as inertial test
masses in the direction of the optical path of the interferometer in the frequency range of
interest. When a gravitational wave passes it creates relative displacements of the test masses.
The relative motion of the end mirrors is read out as intensity variations in the interferometer
output, giving information about the incoming gravitational wave.

For simplicity, consider the case of an incident gravitational wave perpendicular to the
plane of the interferometer with a polarization direction parallel to the interferometer arms.
The passing wave will make one arm of the interferometer shorter and the other longer in half
of the wave period, and reverse the contraction–elongation process in the other half-period.
The relative change of optical length of the two arms 	L = L2 − L1 can be described as a
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phase shift,

	F = 2π	L/λ. (5.1)

This results in a change in the interference pattern at the output of the beamsplitter. The
relative difference in optical path 	L is proportional to the arm length 	L = hL. Generally,
an interferometer is sensitive to a linear combination of the two polarization fields, and h in
the above equation is

h = F+h+ + F×h× (5.2)

where F+ and F× are coefficients depending on the direction to the source and the orientation
of the interferometer.

Because the gravitational signal is extremely small, it is very difficult to monitor the small
time-varying changes in the interference pattern due to the passing gravitational wave. In
practice, the phase difference arising from the optical arm length variations is obtained by the
so-called ‘nulling method’. The idea is to always keep the light returning from the two arms
180◦ out of phase so that its output is a dark ‘fringe’. When the end mirrors are moved by
the passing gravitational waves, the error signals applied to end mirrors to maintain the dark
fringe contain the information of the gravitational wave signals. In this way the effect of power
fluctuations in the laser beam can be minimized, and the shot noise level can be reduced.

Since the detection of gravitation waves with an interferometer is achieved by measuring
the relative optical path (phase) change between the two arms, and since this path difference
is proportional to the optical path L, it is clear that the size of the signal can be increased by
lengthening the optical path of each arm. However, there is an optimum length Lopt. At such
a length the storage time of the light within the interferometer arms is equal to half the period
of the gravitational wave. For arms longer than Lopt, the gravitational wave signal will change
sign during the light travelling time in the arm and the effect will partially cancel out. For
example, for a gravitational wave signal of frequency fg ∼ 1 kHz, the optimum arm length
is Lopt = c/(2fg) = 150 km. Such a long optical path length can be easily realized in a
space-based interferometer (see section 3.2). In an Earth-based interferometer this is made
possible by using multi-pass techniques. One such technique is the multi-pass Michelson
interferometer in which an optical delay line [66] is inserted in each of the interferometer
arms. The other is a Fabry–Perot Michelson interferometer [181] in which a second mirror is
inserted in each arm to form a Fabry–Perot cavity.

5.2.2. Delay line Michelson interferometer. A delay line Michelson interferometer is shown
schematically in figure 33. The two beams coming out of the beamsplitter are reflected many
times between the beamsplitter and the end mirrors before they are recombined. For example,
a 3 km long interferometer can have an optical length of 150 km by having 50 bounces. Apart
from the restriction that the optical path length be shorter than Lopt, the useful number of
reflections is in practice limited by the reflection losses at the mirror.

A practical difficulty of the delay line Michelson interferometer configuration is the
scattered light problem. The delay line uses a large number of beams zigzagging back and
forth between mirrors. It is easy for light to scatter from the mirrors or from the side of vacuum
pipes into the main beam at the photodetector. This scattered light could have a large phase
differenceα = 2πf δl/c with respect to the main beam, where f is the laser light frequency and
δl is the path difference from the main beam. When the scattered light interferes with the main
beam, it results in a phase shift β of the recombined light given by β ∼ a sin α, where a is the
fraction of the scattered light. This change of phase will be sensed by the output photodetector
when combined with the beam from the other arm. It can be seen that any fluctuation of
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Figure 34. Schematic diagram of a Fabry–Perot cavity interferometer.

laser frequency or vibration of the vacuum pipes (which results in a change of δl) will cause
a phase fluctuation of each beam, and thus a fluctuation in the final signal. This effect can be
reduced by stabilizing the laser frequency. Modulation of the laser light [182] can improve
the performance to some extent. This is done by changing the laser frequency f such that
over a certain measurement time the scattered light phase difference α changes from 0–2nπ .
The average effect of the scattered light is then zero. This technique is limited by the dynamic
range of the modulation. Another disadvantage of a delay line Michelson interferometer is
that it needs large mirrors. However, excellent sensitivities of the order h ∼ 10−19/Hz1/2 have
been obtained using a delay line Michelson interferometer of arm length 30 m [183].

5.2.3. Fabry–Perot cavity interferometer. The Fabry–Perot cavity interferometer
gravitational wave detector was first introduced by Drever et al [181]. The idea is to add
two additional mirrors near the beamsplitter, as shown in figure 34.

The near mirror and the end mirror in each arm form an optical cavity. Light travelling
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Figure 35. Basic arrangement of a Fabry–Perot interferometer system [324].

in one arm is reflected between the same pair of spots on the two mirrors, forming a sharp
resonance. This Fabry–Perot cavity is very sensitive to the changes in cavity length, and to
the change in frequency of the light. Because no laser has achieved the required stabilization
level to directly detect the change in cavity length induced by gravitational waves, two cavities
are needed to detect differential changes. The light from a single source passes through a
beamsplitter and illuminates the cavities in the two arms of the interferometer. By looking at
the differential phase change of the two arms, the effect of frequency fluctuations of the light
source can be eliminated, and the signal is a measure of the passing of a gravitational wave.
The size of the suppression of the laser frequency fluctuation noise depends on the balance of
the two cavities. Typically, with a highly stabilized laser, the cavities must be balanced to one
part in 103 or better.

Another approach is to lock the laser in wavelength to one of the cavities, and then to lock
the second cavity to the laser wavelength. The locking signal of the second cavity then gives
the relative cavity length change with respect to the first cavity, due to the passing gravitational
wave. A practical arrangement of a Fabry–Perot cavity interferometer with such a readout
system is shown in figure 35.

The Fabry–Perot cavity interferometer has the advantage of having smaller mirror size,
and thus smaller vacuum pipe size, than that in a delay line Michelson interferometer. Also, the
scattered light problem can be reduced greatly in a Fabry–Perot cavity arrangement because
the scattered light is made to travel the same path as the main beam in the cavity.

5.2.4. Sagnac interferometer. A Sagnac interferometer is schematically shown in figure 36 in
which light beams travelling in opposite directions experience common optical paths. With its
common-path nature, the Sagnac interferometer is insensitive to a range of noise sources that
affect other interferometers. Noise from low-frequency mirror displacements, laser frequency
and intensity fluctuations, laser beam pointing fluctuations, thermally induced birefringence,
and reflectivity asymmetry in the arms are all suppressed. This means that the Sagnac
configuration can have a simplified control system and reduced optical tolerance requirements.
Low-temporal-coherence illumination can be used in a common-path interferometer to reduce
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Figure 36. Schematic diagram of a Sagnac interferometer.

the noise caused by parasitic paths introduced by scattered light. In 1986, Weiss proposed
an open-area Sagnac interferometer for gravitational wave detection. Recently, the zero-area
Sagnac interferometer shown in figure 36 has been analysed and experimentally investigated as
a topology for an advanced gravitational wave detector [184,185]. For 4-km 20-bounce (storage
time of 0.53 ms) LIGO-scale interferometers illuminated with a 1064 nm Nd:YAG laser, the
Sagnac interferometer has its first peak response at 690 Hz with 3 dB bandwidth from 220 to
1250 Hz [184], as shown in figure 37. Proper setting of the storage time allows the peak response
frequency to be tuned to the gravitational wave band of interest. A shot-noise-limited phase
sensitivity of 9×10−10 rad Hz−1/2 has been achieved on a tabletop Sagnac interferometer [185].
It has been demonstrated that precision phase measurement can be performed with a
laser bearing a substantial amount of frequency and amplitude noise [185]. The Sagnac
interferometer with resonant sideband extraction has been demonstrated on the tabletop [186].

The comparison between the Sagnac and Michelson interferometers is detailed by
Mizuno [187] and colleagues. Their conclusion is that, once cavities are used either in the
arms or for power- or signal-recycling, the advantages of the Sagnac interferometer over the
Michelson interferometer disappear. Without power recycling, �1 kW laser with quite high
stability is required to achieve the desired sensitivity for Sagnac interferometer.

5.2.5. All-reflective interferometer. Extremely high light power incident on the beamsplitter is
needed to reduced the photon shot noise which is a major limiting factor in the high-frequency
regime (∼1 kHz) in laser interferometers. However, high light power poses problems for
transmissive optics such as beamsplitters and the input/output mirrors of Fabry–Perot cavities,
because there is always some optical absorption causing heating. The optical components
are heated both by absorption in the substrate and in the reflective coatings. Heat from both
regions leads to thermal lensing and birefringence in the substrate, and also to distortion
of the optical surfaces. The Sagnac interferometer might alleviate these problems since the
counterpropagating laser beams in principle share the same optical path.

A more certain method of reducing adverse thermal effects is to eliminate transmissive
optical components completely. The losses in optical coatings are generally less than
absorption losses, so by using reflective diffractive components instead of lenses and
beamsplitters, it should in principle be possible to make interferometers much more tolerant
of high optical powers. The idea of an entirely diffractive reflective interferometer has
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illuminated by a 1064 nm laser. The Michelson interferometer response (dotted curve) is shown
for comparison [184].

been discussed by Drever [188]. The concept would allow test masses to be created using
nontransmissive materials such as silicon or niobium, where low thermal noise did not have
to be combined with excellent optical properties. One possible interferometer configuration
using a diffractive beamsplitter is shown in figure 38. Veitch et al [189] have reported tests
of a holographic beamsplitter used to remove optical aberrations and guarantee high fringe
visibility and complete destructive interference at the interferometer output even in the presence
of aberrations. An experimental demonstration of various grating beamsplitter tabletop
interferometers (Michelson, Sagnac and Fabry–Perot) has been performed at Stanford [190].
For a practical diffractive interferometer it will be necessary to perfect reflective diffractive
elements. If optical cavities are to be used, the mirror coatings will have to include a diffractive
coupling beam. For example, a mirror may be required that has 99.999% reflection, and 0.001%
coupling into a beam that leaves the mirror at a suitable angle. This problem sets a challenge
for optics in the next decade, which can lead to major improvements in gravitational wave
detection in the future.

5.3. Recycling

5.3.1. Power recycling. The sensitivity of an interferometer is ultimately limited by shot
noise due to photon quantum statistics. The standard quantum limit for an interferometer
can be obtained from the balance of two competing quantum noise sources as described by
Caves [191, 192], Braginsky et al [112] and others. The first is the photon-counting error due
to N1/2 fluctuations in the number of output photons from the interferometer. The second is
the radiation-pressure error. This arises from the perturbations on the end mirrors produced
by fluctuating radiation-pressure forces which also scale as N1/2. As the input laser power P
increases, the relative photon-counting error decreases asN1/2/N , while the radiation-pressure
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Figure 38. Schematic diagram of a Michelson interferometer based on the use of reflective
diffraction grating as a beamsplitter.

error increases as N1/2. Minimizing the total error with respect to P yields a minimum error
of order of the standard quantum limit and an optimal input power for a simple Michelson
interferometer,

Popt = λmc

8πτ 2√η
, (5.3)

at which the minimum error can be achieved. Here, m is the mass of an end mirror, λ is the
wavelength of the light, τ is the measurement duration, and c is the light velocity.

With a reasonable set of values for interferometer parameters, m ∼ 102 kg, τ ∼ 10−3 s,
λ ∼ 1 µm, the optimum laser power Popt is approximately 6×107 W—a power far higher than
the power of present CW lasers. The low available input power means that the interferometer
for use as gravitational wave detectors will be limited not by the standard quantum limit, but
rather by photon-counting statistics (shot noise) which scales inversely to the square root of
incident power at beamsplitter.

As mentioned above, the technique of power recycling [165,166] can be used to increase
the power incident at the beamsplitter and improve the sensitivity of interferometer detectors.
The basic idea is that because the interferometer detector operates at a dark fringe output,
almost all of the light (reduced only by losses in mirrors and beamsplitters) is reflected back
towards the laser, and can therefore be used again as long as it is phase coherent with the input
laser beam. This technique is realized by inserting a recycling mirror M2 in between the laser
and the beamsplitter as shown in figure 35. The position of the recycling mirror (or the laser
frequency) is then carefully adjusted so that the recycling mirror combined with the two main
cavities and the beamsplitter form a large resonant optical cavity containing the interferometer.
By doing so, an effective laser power perhaps 1000-fold larger than the original laser may be
built up inside this cavity, thus reducing the shot noise.

5.3.2. Resonant recycling. The resonant recycling technique [165] uses a mirror arrangement
such that after each half gravitational wave period, the light in the two arms exchange arms
instead of recombining at the output photodetector. In this way, the light of each beam always
experiences phase shift in the same direction. The phase shift builds up during the total storage
time over many gravitational wave cycles. In the end, a large phase difference between the two
arms can be detected at the output of the interferometer. This technique can be used in both
delay line Michelson interferometers and in Fabry–Perot interferometers. Figure 39 shows
resonant recycling arrangements for both delay line interferometer and Fabry–Perot cavity
interferometer.
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Figure 39. (a) Resonant recycling arrangement for a delay line interferometer. (b) Resonant
recycling arrangement for a Fabry–Perot cavity interferometer.

In the case of resonant recycling in a Fabry–Perot cavity interferometer, it is considered
that the two cavities are coupled through the high-reflectivity mirror M0. This coupled system
then has two modes of oscillation. The interferometer is tuned so that one of the modes of the
coupled optical cavity system matches the frequency of the laser light and the other matches the
frequency of the optical sideband produced by the motion of the end mirrors due to an incident
gravitational wave. Both the laser light and the sideband signal produced by gravitational
wave are enhanced at the output. In principle, resonant recycling gives better sensitivity for
detecting periodic signals of known frequency. The total storage time is limited by the losses
of the mirrors.

5.3.3. Dual recycling. A simple arrangement for dual recycling [193] is shown in figure 40.
In addition to the power recycling mirror M3, a new signal recycling mirror M4 is placed
at the output of the interferometer. Generally, the light at laser frequency (carrier) cannot
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reach M4 when the interferometer is locked on a dark fringe. However, when the gravitational
wave arrives, it modulates the interferometer arm length difference and generate sidebands at
frequencies offset from the laser frequency by the gravitational wave frequency. The sidebands
leak from the interferometer output towards M4 as gravitational wave signal. So M4 has no
effect on the carrier but reflects the signal sidebands back to the interferometer. If we adjust
the position of the mirror M4 to allow the reflected signal sidebands and the signal in the
interferometer arms to be in phase, the signal power (sensitivity) will be increased. The relative
position of the recycling mirror M4 determines the tuning frequency of the dual recycling. The
bandwidth is determined by the reflectivity of the signal recycling mirror and the loss of the two
arms. The dual recycling with tuning frequency at zero is called broadband dual recycling. The
relative signal-to-noise ratio of a 3 km, 16-reflection delay line interferometer with different
degrees of tuned dual recycling is shown in figure 41. The central frequencies are at 200
and 1000 Hz respectively. Even a relatively short arm interferometer can obtain impressive
sensitivity. For example, figure 42 shows the predicted shot-noise-limited strain sensitivity
of a 400 m, four-pass delay line [194]. The input power is 5 W. The tunned frequency is at
200 Hz. Curves (a) and(c) are based on application of recycling factors (450) already achieved
in the laboratory [174], curves (b) and (d) employ somewhat higher factors.

5.3.4. Simple dual recycling instruments. The advantage of the Fabry–Perot Michelson
interferometer is that high laser power and low mechanical noise requirements are
predominantly restricted to optical cavities. Thus one needs only four very-high-performance
components (the main Fabry–Perot mirrors) while the beamsplitter and other components are
far less critical. When this scheme is extended to dual recycling as shown in figure 43. The
interferometer consists of nested cavities, a pair of Fabry–Perot cavities within the overall
power recycling and signal recycling cavities. This requires rather complex control systems.

A much simpler arrangement would be a four-pass dual recycling Michelson
interferometer (GEO project) as illustrated in figure 43 [195]. Such a system utilizes only
two cavities. Now, to regain the sensitivity of the Fabry–Perot Michelson, the interferometer
must use high levels of power recycling, plus moderate signal recycling. Because of the
thermal lensing problem [196], this arrangement requires excellent mechanical and optical
performance of the beamsplitter.

It appears that very-low-loss silica beamsplitters may allow recycling factors up to
104 [197]. An alternative would be to use sapphire beamsplitters, which have intrinsic
advantages associated with their high rigidity, and high thermal conductivity. However, the
disadvantage of sapphire is its optical birefringence which requires control of the orientation
of the crystal relative to the input and output beams.

5.3.5. Resonant sideband extraction. Resonant sideband extraction [168, 169] is a similar
configuration to dual recycling for laser-interferometric gravitational wave detectors with
Fabry–Perot cavities in the arms. This scheme reduces the thermal load on the beamsplitter
and the coupling mirrors of the cavities and allows one to adapt the frequency response of the
detector to a variety of requirements.

To obtain a good sensitivity in interferometric gravitational wave detectors one requires
high light power in the arms of the interferometer to increase the photon shot-noise-limited
signal-to-noise ratio. This can be done by increasing the finesses of the arm cavities. But
since high finesse cavities have narrow bandwidth, (i.e. long optical storage time) this sets a
limit to the detector bandwidth. The same power build-up can equally be obtained in principle
by using power recycling to compensate for the limitation to the power enhancement in the
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Figure 41. Relative signal-to-noise ratio of a 3 km 16-reflection delay line with different degrees
of tuned dual recycling. The tuning frequencies are at 200 Hz and 1 kHz respectively. The vertical
axis is in arbitrary units. The solid curve is for power recycling only; the dashed curve is for signal
recycling mirror reflectivity, Rs = 75%; the dash-dotted curve for Rs = 90%; the dotted curve for
Rs = 99% [325].

arm cavities. However, in practice the power recycling gain achievable is likely to be limited
by imperfect contrast as well as losses in the beamsplitter and the coupling mirrors of the
arm cavities. Furthermore, as already discussed, high power may induce thermal lensing and
birefringence in the beamsplitter.

Resonant sideband extraction allows this dilemma to be avoided in an interferometer with
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Figure 42. Frequency response of a 400 m interferometer. Input power is 5 W. Curve (a) power
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Figure 43. Schematic diagram of a four-pass delay line interferometer with both power and signal
recycling (i.e. dual recycling). The angles and lengths are not to scale. The test masses of the
interferometer are formed by the main mirrors and the beamsplitter [195].
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arm cavities. The scheme resembles signal recycling, but uses a signal extraction mirror
between the beamsplitter and the photo-detector. The purpose of this mirror is to decrease
the storage time of the signal sidebands and therefore increase the detector bandwidth. This
is achieved because the signal extraction mirror and arm cavities form a three-mirror-coupled
cavity. Because the interferometer is locked to dark fringe the signal extraction mirror has no
effect on the carrier. The signal extraction cavity formed by the signal extraction mirror and the
coupling mirrors of the arm cavities forms a compound mirror which has frequency-dependent
transmittance and reflectivity. Tuning the signal extraction cavity allows the transmittance
for the signal frequencies of interest to be higher than that of arm cavities alone. For these
frequencies the storage time in the three-mirror cavity is shorter than that in the unmodified
arm cavity. In this case, the reduction of the storage time results in an increased detection
bandwidth and unchanged high-finesse arm cavities for the carrier. In principle, the power
enhancement in the arm cavities could be so great that no power recycling would be required.
Yet the power passing through the beamsplitter and the coupling mirrors of the arm cavities
could be low enough to have little thermal load. Figure 44 shows the frequency response
of 3 km arm length interferometer with resonant sideband extraction configuration at various
conditions [168].

5.4. Vibration isolation

At Earth-based sites for gravitational wave detectors, the ground is continuously vibrating
with a rms amplitude of xs ≈ αf −2 m Hz− 1

2 , where α ≈ 10−6–10−9. This is far greater than
the signals we want to measure. Thus it is of great importance that terrestrial gravitational
wave detectors, both resonant-bar and laser interferometers, are isolated from the seismic noise
background. High-performance mechanical vibration isolation systems are required for this
purpose. An ideal vibration isolator would not only cut out all significant seismic vibration
in the pass band of the gravitational wave detector, but also cut out the seismic noise at much
lower frequencies, so that the suspended test masses were effectively stationary with respect
to the laser light field. If the total rms motion were much less than an optical fringe width, the
servo control requirements would be minimized: components would be as stable as if rigidly
attached to an optical table, or placed in interplanetary space. Operation of an interferometer
would then be very simple. We show below that total rms motion from all frequencies above
0.2 Hz can in principle be reduced to about 1 nm.

This ideal level of isolation has not yet been achieved but there are various approaches
that when combined, should approach the ideal performance discussed above. We subdivide
the approaches to this problem under the headings passive isolation, active isolation and pre-
isolation.

5.4.1. Passive mechanical isolation. Passive mechanical vibration isolators are mass–spring
low-pass filters. For a multistage isolator, each stage of the isolator with resonant frequency
f0 will attenuate vibration by a factor (f0/f )2 at frequencies f � f0. The total attenuation
of the multistage isolator at frequencies above the corner frequency (the highest normal mode
frequency of the isolator) is (f1f2 . . . fN/f

N)2, where N is the number of stages.
Figure 45 shows the typical behaviour of such an isolator. The figure shows a typical

transfer function of a five-stage isolator with f0 = 2 Hz. Below the corner frequency the
normal modes amplify the seismic noise, while above it the isolation improves as the tenth
power of the frequency ratio.

Traditionally, vibration isolators for gravitational wave detectors were based on industrial
vibration isolators, using systems such as alternating layers of lead (or steel) and rubber [5].
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Figure 44. Typical frequency response of a 3 km arm length interferometer with resonant sideband
extraction configuration. (a) Dependence of the frequency response on the length of the sideband
extraction cavity (SEC) when the carrier is resonant in SEC. The curves, in order of increasing
response at 400 Hz, are for SEC length of 1 m, 30 m, 100 m, 300 m. (b) Dependence on the tuning
of SEC to carrier. The broadest response corresponds to the carrier resonant in SEC, and the others
are detuned from it (carrier resonant condition). The length of SEC is 100 m, and detuning is by
steps 2π/1000. In both figures, the vertical units are arbitrary [168].

Isolators of this type have been used for room temperature vibration isolation in both
resonant-mass gravitational wave detectors and prototype laser interferometer detectors. The
disadvantage of these isolators is that they are not suitable for use in high vacuum (unless
the rubber is outgassed or packaged in metal bellows); moreover, they are not suitable for
uses at low temperatures where elastomer materials harden. In addition, this type of isolator
generally shows large temperature coefficients and drift, due to the properties of the rubber,
as well as having a relatively high corner frequency, limited by the compressive yield of the
elastic elements.

Ideally, a multistage pendulum could be used to provide sufficient horizontal isolation for
a laser interferometer gravitational wave antenna. Several groups have used double or triple
pendulum suspensions combined with rubber and steel isolation stacks [198–201]. However,
the curvature of the Earth creates intrinsic cross-coupling between the horizontal and vertical
directions, due to the fact that the laser beam in an interferometer can only be perpendicular to
the local vertical at one location. In a large-scale laser interferometer detector, the magnitude
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Figure 45. (a) Theoretical transfer function of a five-stage vibration isolator. Each stage has a
natural frequency of 2 Hz. (b) Experimental upper limit of performance of a five-stage isolator [326],
with a typical seismic curve of 10−6f−2. At high frequencies the isolation reaches the noise floor
of the sensing transducer of 3 × 10−15 m Hz−1/2. Below 58 H the mechanical resonant frequency
of the transducer, the sensitivity of the transducer degraded. Practically all the data above 50 Hz
are transducer noise.

of the cross-coupling in ideal circumstances is ∼10−3. In real isolators the cross-coupling
is likely to be degraded by mechanical imperfections. Thus it is important that the vertical
vibration isolation should also be very high. The isolators must also be strong enough to
support a total weight ∼102–103 kg.

In interferometer antennas, the corner frequency needs to be pushed as low as possible
to create the broadest possible bandwidth for observations. There is a great advantage in
operating an interferometer antenna at the lowest possible frequencies. Not only does it
extend the range of sources accessible to the detector, but for specific sources such as binary
neutron star coalescence events, it increases the number of cycles of the coalescence that
can be observed, thus allowing the signal-to-noise ratio to be increased. Giazotto pioneered
the development of low-frequency vibration isolation. A very-large-scale multistage low-
frequency superattenuator based on a gas spring was developed at Pisa [202, 203]. It had a
high load-bearing capacity and a corner frequency of 2–3 Hz. However, gas springs have
strong temperature coefficients, and so such isolators have problems of thermal stability and
complexity. At the University of Western Australia, tapered metal cantilever spring vibration
isolators [118], were developed, which showed excellent performance but somewhat higher
corner frequency. The Pisa group replaced gas springs with similar tapered cantilevers and
reduced the mechanical frequencies by use of magnetic antisprings, created by using magnetic
repulsion between like poles of permanent magnets. This allowed low-frequency behaviour
similar to the gas spring system to be achieved [204].

5.4.2. Active isolation. Active isolation techniques have been investigated extensively in
gravitational wave research [205–210]. The basic idea is simple, as shown in figure 46: the
relative displacement between the test mass to be isolated and the suspension point (the error
signal) is sensed and fed back to an actuator to servo the suspension platform so that the
motion of suspension point follows the motion of the test mass. In this way, the motion of the
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Figure 46. Schematic diagram of an active pendulum [205].

suspension platform is reduced and hence the motion of the test mass. If we look at the simple
case of figure 46, the equation of motion of the mass is (for simplicity we ignore the damping
term)

ẍ = ω2
0(x

′ − x0), ω2
0 = g

l
. (5.4)

Assuming the error signal is fed back to the suspension point so that x ′ = x0 −A(x ′ −x), then
the transfer function of the system is

x

x0
= ω2

0

−ω2(1 + A) + ω2
0

= ω2
0/(1 + A)

−ω2 + ω2
0/(1 + A)

. (5.5)

It can be seen that this system behaves like a pendulum with an equivalent resonant frequency
of ω0/

√
(1 + A). At frequency f � fo, the attenuation is [fo/f/(1 +A)]2 instead of (fo/f )2.

This means that the isolation of mass m is improved by a factor of (1 + A).
The basic arrangement for vertical active isolation is shown in figure 47. The final transfer

function is slightly complex. However, from the block diagram (figure 48), it can be seen that

x = G′x ′, G′ < 1, (5.6)

x ′ = G[xo − H(x ′ − x)] G < 1, (5.7)

where GG′ is the passive transfer function of the system and H is the loop gain of the feedback.
The closed loop transfer is then

x

x0
= GG

1 + H(G′ − G′G)
. (5.8)

The performance of this active system is improved by a factor of [1+H(G′ −G′G)]. However,
it is impractical to assume very large gain H to obtain high-performance isolation. There are
several limitations. One is the presence of internal resonances of the isolation structure. At
each resonance there will be a phase shift added to the loop transfer function which can make
the servo unstable. To ensure stability, the gain of the servo should be within the limit that
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Figure 48. Block diagram of the active isolator [209].

all the internal resonant peaks are below unity gain. Another limitation is the noise in the
sensor. This noise is treated the same by the servo system as the error signal between test mass
and suspension platform. This noise will be amplified and fedback to the platform to create a
displacement. At low frequency, where the attenuation of the test mass from the platform is
not high, sensor noise plays an important role since the test mass tends to follow the movement
of the platform.

5.4.3. Residual motion and the need for ultralow-frequency pre-isolation. A suspended test
mass in a laser interferometer is required to be very precisely located to within � 10−6 of an
optical wavelength. Residual motion of the test mass in interferometers operated to date is
typically ∼few microns. This has caused two problems. First, it makes it difficult to acquire
lock, because very large forces must be applied to decelerate the test mass and locate it within
operating range. Second, it makes it impossible to act directly on the test mass (by say a
magnetic actuator) because the electronic noise of the actuator circuit is never less than 109

times smaller than the maximum signal which can be applied. (This is the dynamic range of
a low-noise amplifier.) If the maximum signal is able to correct 10−6 m of motion, then the
noise level will create noise motion just 109 times smaller, i.e. 10−15 m. This is unacceptably
large.

There are two possible solutions to the problem. One is to create a more complex servo
system and, in particular, to apply control forces to the stage above the test mass. All detectors
constructed to date use this approach. The second possibility is to greatly reduce the residual
motion.

Residual motion, and in particular residual accelerations, can be greatly reduced if a
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Figure 49. Comparison of transfer functions of a multistage isolator with and without an ultralow-
frequency stage. Dotted curve: five-stage 2 Hz isolator, solid curve: four-stage 2 Hz isolator plus
a 0.1 Hz ultralow-frequency pre-isolator.

conventional isolator is suspended by a pre-isolator with a much lower resonant frequency.
This is illustrated in figure 49, where the addition of a single low-frequency stage reduces
the amplitude of the normal mode peaks by about 50 dB. To realize this advantage requires
the development of ultralow-frequency (ULF) mechanical suspension stages. As mentioned
before, the isolation performance of an isolator with resonant frequency of fo above the
corner frequency is (fo/f )2. Thus the lower the resonant frequency fo, the better isolation
performance and the lower the corner frequency. This does not guarantee that with one or
several ULF stages one can obtain very high isolation performance at high frequency. The
problem is that internal mechanical resonances usually occur at frequencies that are typically
about 102–103 times the fundamental resonant frequency of the mechanical resonant structures.
Thus, for example, a stage with 10−1 Hz resonant frequency is likely to have an internal
resonance from 100 Hz upwards and these will corrupt its isolation performance.

As a result, ULF stages are best used as pre-isolation stages in conjunction with low-
frequency isolators. For an N -stage isolator, there are N normal mode peaks with amplitude
up to 100 times the seismic background, depending on the Q-factor of the isolation elements.
It is predominantly these normal modes which make it difficult to control and lock the
interferometer. As discussed in section 5.4.1, different methods have been used to damp the
normal modes, such as magnetic eddy current damping [200,211] and vibration absorber [212].
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Figure 50. Simple model of an inverted pendulum. Figure 51. Simplified diagram of a folded pendulum.

A ULF-stage pre-isolator efficiently and passively reduces the normal mode amplitude as
shown in figure 49. All the normal modes are on the cut-off slope of the ULF stage and are
greatly reduced, leaving one very-low-frequency mode which is easy to control. This greatly
simplifies the control system of the interferometer.

There are two main approaches to achieving very low frequency. One is to use a negative
spring or antispring. A simple version is the inverted pendulum [213,214] as shown in figure 50.
The resonant frequency of an inverted pendulum is given by

ω0 =
√

k

m
− g

l
, (5.9)

where k is the spring constant of the flexure elements, m is the mass and l is the length
of the inverted pendulum. Gravity provides a negative spring constant. The device has
a low frequency when g/l ∼ k/m, and it becomes unstable for g/l > k/m. Inverted
pendulums for gravitational wave detectors were first investigated in UWA [213]. Because a
mechanical Hooke’s law spring is being used to counter a gravitational spring, and because the
temperature coefficient of length differs from the temperature coefficient of Young’s modulus,
such antispring devices generally have relatively large temperature sensitivity. Thus servo
control is needed to maintain a stable operating position. A full-scale inverted pendulum pre-
isolation stage about 6 m high has been built for VIRGO’s supperattanuator [215], and a 1 m
stage has been developed at UWA [216].

For horizontal isolation, more elegant devices minimize the contribution of mechanical
springs. One such device is the folded pendulum [217–219]. It combines a positive and
negative pendulum as shown in figure 51. The resonant frequency of the folded pendulum is
given as

ω =
√

1

Me

(
me1g

l1
− me2g

l2

)
+ γ , (5.10)

where γ is a small additional term which takes into account elastic contributions from the
flexures, Me = me1 + me2 is the equivalent mass of the pendulum and l1, l2 are the lengths of
the positive and negative arm respectively. This device has low temperature sensitivity and has
achieved a resonant frequency of 15 mHz [220]. With a resonant frequency of 17 mHz, this
device gives isolation of more than 90 dB at 10 Hz. Above 15 Hz, the attenuation is degraded
due to internal resonances of the isolator structure, as discussed above.

Another type of ULF stage is the X-pendulum [221, 222]. It uses two cross-wire linkage
arrangements that mimic the motion of a very long pendulum. A resonant frequency of
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50 mHz has been demonstrated. With a resonant frequency of 0.21 Hz, the X-pendulum has
demonstrated 30 dB isolation at 3 Hz. Above 3 Hz, the internal resonances dominate.

Both the folded pendulum and X-pendulum are most easily implemented as one-
dimensional isolators. Although they can be cascaded to form a two-dimensional horizontal
isolator, there are significant construction problems. Winterflood and Blair [223] have used
the Scott–Russel linkage, shown schematically in figure 51. This device mimics the motion
of a very long conical pendulum, achieving two-dimensional horizontal isolation in one single
stage. A full-size prototype pre-isolator [224] has demonstrated a resonant frequency of 7 mHz
and with a resonant frequency of 17 mHz, it achieves an isolation exceeding 75 dB at 0.5 Hz.

It is interesting to note that only one of the four horizontal stages discussed above is
dependent on a carefully designed spring. This is the inverted pendulum, where a gravitational
antispring balances on angular mechanical spring. In the other cases, mechanical springs
are eliminated, except in so far as being an intrinsic, but small, component of a flexure
suspension. All the linkage-based devices have the advantage that the temperature coefficients
and nonlinearity of springs are minimized.

As mentioned above, cross-coupling requires a high level of isolation for both horizontal
and vertical isolation. Thus there is little point in building an isolator with excellent horizontal
pre-isolation unless it also has good vertical pre-isolation. Since the vertical isolation must
always counteract a large gravitational force, it is almost impossible to avoid the use of large
mechanical springs for vertical load bearing. However, several practical means of counteracting
the spring constant have been demonstrated. The first is the magnetic antispring, demonstrated
at Pisa [204, 225]. Pairs of magnets in a repulsive arrangement create a potential hill in the
middle line of the magnet pairs. The negative spring constant represented by the potential hill
partially cancels the positive spring constant, substantially reducing the total stiffness of the
spring. Unfortunately, most magnets have high temperature coefficients, so that the magnetic
antispring must be very carefully temperature controlled.

An alternation which avoids magnets is the geometric antispring. This was first
demonstrated by LaCoste in his seismometer design [226], in which a zero length coil spring
suspends a horizontal arm by acting on it at an angle (figure 53). The torsion crank linkage
developed by Winterflood and Blair [224] uses a different geometrical antispring concept, as
illustrated in figure 54. This design makes use of the nonlinearity produce by the torsion
arm connected to a suspension link. It is arranged so that the effective spring constant
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Figure 53. (a) LaCoste linkage. (b) Vertical preisolation using LaCoste linkage.
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Figure 54. The torsion crank linkage arrangement [224].

k = ∂F /∂y(F = force, y = vertical displacement) is almost zero and constant in a certain
range. In a simple model, the torsion crank achieved a resonant frequency of 50 mHz. This
vertical ULF stage can be combined with a Scott–Russel stage to create a three-dimensional
pre-isolator as shown in figure 55.

De Salvo has demonstrated a geometric antispring based around a pair of cantilever blade
springs [227]. The torsion rods of figure 54 are replaced by cantilever blades, and using
appropriated angled suspension wires the same geometry effect causes nulling of the spring
constant for a certain deflection angle.

Figure 56 shows the residual motion predicted for a passive isolator being developed at
UWA [216]. This system utilizes passive eddy current damping, as well as seismic tilt control.
The predicted performance is 10−9 m rms above 0.2 Hz. If such an isolator can be realized,
interferometer operation will be greatly simplified.

5.5. Thermal noise

Once the seismic noise cut-off is lowered sufficiently through the use of high-performance
vibration isolators, thermal noise will become the critical source of noise. From the fluctuation–
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Figure 55. Three-dimensional pre-isolation stage, consisting of a torsion crank vertical stage and
a Scott–Russel horizontal stage.

Figure 56. Successive reduction of residual motion. The bottom curve is the predicted overall
isolation performance with pre-isolation stage, eddy current damping and tilt control.

dissipation theorem [90] the general power spectrum of the minimal fluctuation force is

F 2
th = 4kBT R(ω), (5.11)

where kB is the Boltzmann constant and R(ω) is the real part of the impedance of the system.
Using Z = F/v, the above equation can be expressed as

x2
th = 4kBT σ(ω)

ω
. (5.12)

σ(ω) is the real part of the admittance Y (ω) = 1/Z(ω). For a simple harmonic motion
system with spring constant k, mass m and a damping r , the thermal noise displacement power
spectrum is [228]

x2
th = 4kBT r

(k − mω2)2 + r2ω2
. (5.13)
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If a damping mechanism of structural damping is assumed, which can be described with a
complex modulus of elasticity [229], k = k0[1+iϕ], ϕ = constant (i.e. r = kϕ), equation (5.18)
becomes

x2
th = 4kBT kϕ

ω[(k − mω2)2 + k2ϕ2]
= 4kBT ω0ϕ

ωm[(1 − ω2

ω2
0
)2 + ϕ2]

, (5.14)

where ω0 =
√

k
m

is the angular resonant frequency.
In a laser interferometer gravitational wave detector, thermal noise is mainly divided into

two classes—the suspension thermal noise and the internal thermal noise of the test mass.

5.5.1. Suspension thermal noise and Q-factor of the pendulum. Suspension thermal noise is
mainly the Nyquist noise of the test mass pendulum of the interferometer. The Q-factor of a
pendulum suspension can in principle be very high because the energy storage is predominantly
in the effectively loss-less gravitational field. However, some elastic energy must always be
stored in the flexure which supports the pendulum. The Q-factor of a pendulum is limited
by the losses in this element. The Brownian motion noise amplitude of a simple pendulum at
angular frequency ω, for any normal mode at frequency ωp � ω is given by

x2
p(ω) = 4kBT ωp2

Qpmω5
. (5.15)

The Q-factor of the pendulum is given by Qp = γQ0, where Q0 = 1/ϕ is the intrinsic Q-
factor of the flexure material, and γ is the enhancement factor, which depends on the geometry
and material of the pendulum flexure [228, 230].

Applying equation (5.20) to a simple pendulum, it has been shown that the thermal noise
in a simple pendulum scales as [228]

x2
th ∝ m1/2. (5.16)

It can be seen that the suspension thermal noise can be reduced by increasing the mass of
the pendulum and the quality factor of the test mass pendulum stage. To obtain numerical
estimates, consider a typical interferometer with parameters of L = 3 km, T = 300 K,
m = 30 kg, fp = ωp/2π = 1 Hz, and Qp = 109. We then have

h = x

L
∼ 10−21

(
10 Hz

f

)5/2
/√

Hz. (5.17)

This shows that extremely-low-loss pendulums are essential. For example, to obtain the
sensitivity goals of 10−23/

√
Hz at 10 Hz, a pendulum Q-factor of 1010 is required.

At current sensitivity levels, it is barely possible to measure directly the thermal noise
floor for high Q-factor test masses over the frequency range of interest for gravitational wave
detectors. The thermal noise has to be inferred from Q-factor measurement of some resonance
at other frequencies. However, the Q-factor and frequency relation is model dependent, and
the calculated thermal noise floor differs with different damping mechanism assumptions.
Frequency-independent Q-factors over a large frequency range have been approximately
confirmed in some materials [214, 231–234]. The mechanism of structural damping is now
widely accepted. However, it still needs more investigation, particularly to confirm the
phenomenon in low-loss single-crystal materials.

Various types of suspension have been studied to obtain a high pendulum Q-factor. Most
researchers have assumed that wires are necessary. Suspensions with a thin wire double-loop
simple pendulum configuration are widely used [199,200,235–237]. A pendulum Q-factor of
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Q ∼ 108 with wire suspension is expected [238], assuming reasonable Q-factors for the wires.
Pendulum Q-factors exceed 107 had been observed with fused silica fibre suspension [239].
The highest pendulum Q-factor reported so far is >3 × 108 by Braginsky et al [240] with a
monolithic silica fibre and a 30 g mass.

The simple pendulum suspension system inevitably will have a set of middle-frequency
violin string modes from the suspension wire. Those modes will contaminate the window
of gravitational wave detection. The problem of the thermal noise of pendulums suspended
by wires has been intensively studied [232–234, 241–243]. Studies have shown that high
pendulum Q-factor is related to a high violin string mode Q-factor. So each violin string
mode is confined within a very narrow frequency band.

Theoretical analysis has shown that significant improvements can be achieved if the
pendulum is replaced by a compound pendulum supported by a thin membrane which acts as
a hinge [230]. A pendulum with hinge suspension has been shown to achieve Q ∼ 107 [244].
Using known high-Q materials such as niobium which has a Q-factor ∼105 in thin membrane,
and assuming that Q is independent of frequency, it can be shown that Q-factors exceeding
107 [245] can be expected. Also, since the test mass pendulum is suspended by a very short
membrane, the violin string mode will be high enough to be neglected. The membrane flexure
can be made much thinner than the wire flexure and thus has lower thermoelastic effect.

5.5.2. Test mass internal resonance thermal noise. The test mass will have many internal
resonances. The total thermal noise thermal noise spectral density can be expressed as [228]

x2
th = 4kBT

ω

∑
i

ω2
i ϕi

mi[(ω2
i − ω2)2 + ω4

i ϕ
2
i ]
. (5.18)

Here i is the index of the ith mode, mi is the effective of ith mode and ϕi = 1/Qi , where Qi

is the quality factor of the ith mode. Typical internal resonances of a test mass are at about
several kilohertz. The thermal noise spectral density far below the internal resonant frequency
ω � ωi (assuming loss factor ϕi = ϕ = constant) is given by

x2
th

4kBT ϕ

ω

∑
i

1

miω
2
i

. (5.19)

Although it can be seen from the above equation that the lowest internal resonance contributes
most to the thermal noise, detailed theoretical studies [246, 247] has shown that higher-order
modes cannot be neglected, especially when the laser beam is not perfectly aligned.

From equation (5.19) it can be seen that to reduce internal thermal noise it is required
that the test masses have high internal resonances and very high Q-factors (1/ϕ). Since ωi

is proportional to the velocity of sound, high sound velocity materials are required. It is
worthwhile pointing out that the dimensions of the test mass should not be too large so as
to keep the frequency of internal resonances as high as possible. This is contradictory to
the requirement of using a big test mass to reduce the pendulum thermal noise. There is a
compromise in choosing the size and mass of the test mass. High Q-factor materials (such
as quartz and silicon) have been investigated in prototype laser interferometer detectors [248].
At present, fused silica test masses are widely used in prototype interferometer detectors. The
Q-factor of silica test masses were observed to be of the order of 106 [249,250] with a higher
value of >107 in some resonant modes recently observed by Beilby and Startin [251]. The
highest Q-factor of silica was reported by Braginsky of 6 × 107 [252].

Using another highQ-factor material, sapphire, as test mass has been proposed [230]. The
excellent thermal and mechanical properties of sapphire makes it a promising material for use
in test masses. Compared with silica material, the high thermal conductivity means the thermal
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lensing problem can be minimized, while the very high Young’s modulus means the internal
resonance will be high. The highest reported sapphire Q-factor is 4 × 108 by Braginsky [112]
and recent measurements reported a reproducible result of 2–3 × 108 Q-factors [239, 253].
Theoretical analysis [254] suggests that the thermal noise can improve by a factor of >10 by
using sapphire test mass instead of silica test masses.

In practice, the suspension joint to the test mass plays an important role in obtaining both
high-Q pendulum motion and high internalQ-resonance. Monolithic suspension systems have
been suggested and investigated. These include bonding the silica fibre to the silica test mass
using silicate bonding method [255], and bonding niobium flexure to sapphire test mass using
active alloy bonding [256] and possibly silicate bonding [257].

5.6. Control systems

As mentioned above, the test masses in the interferometer must be suspended to isolate against
seismic and environmental vibration. To achieve operation of an interferometer a feedback
system must be used control the test mass position to high precision. Firstly, a local control
system is necessary to suppress large-scale motions and align the mirrors to the point where
the best interference contrast may be achieved. Secondly, to allow maximum sensitivity, a
global control system is required to control the interferometer arm lengths to a relative motion
of ∼10−12 m rms [183]. This is achieved by locking the interferometer to a dark fringe.

5.6.1. Local controls. Various damping methods to suppress low-frequency normal mode
in vibration isolators have been investigated. Passive damping such as magnetic eddy current
damping has been investigated [200, 211]. The problem with this type of damping is that the
damping is usually relative to a support structure and can introduce noise into the isolators
both through seismic noise and resonant peaks of the support structure. This degrades the
high-frequency performance of the isolator.

An alternative method of magnetic damping uses the narrow-band resonant absorber. In
this case, individual modes of an isolator can be damped using a tuned resonator which is itself
magnetically damped.

The low-frequency normal modes can also be attenuated by active damping [162, 199,
258–261]. A correction force corresponding to the motion of the suspended masses (measured
by an inertial or non-inertial sensor) is applied to the appropriate part of the suspension
system. A non-inertial sensor such as shadow sensor [162] is widely used on prototype
interferometers [162, 163]. It consists of a small vane mounted on the sensed surface, a light-
emitting diode (LED) and an opposing photodiode (PD) mounted on the reference surface.
The vane is free to move between the LED and PD and develops a signal proportional to the
displacement of the vane by partially interrupting the light. The correction forces are applied by
a small permanent magnet mounted integrally with the vane, and a coil mounted on the reference
surface. The reference surface is usually the support frame, which is attached to the ground.
Then the problem arises that the seismic noise can be injected into the servo loop both in sensing
and in force actuation. If motion sensing is done with respect to the frame, it is impossible
to avoid seismic noise in the sensing. This sensing noise has components in the signal band
which must be prevented from driving the test mass and appearing in the signal output. This
is readily achieved by electronic filtering of the signal [162,260]. The noise injection through
the coil can be overcome by carefully positioning the coil so that the magnetic field gradient
is maximized at the magnet. This results in the best decoupling of the forces applied on the
controlled masses [162]. Another way to overcome frame vibration is to use two coils to
linearize the field and create a magnetic force which is independent of the position and motion
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of the frame [260]. If the reference surface is a reaction mass [262] which is well isolated from
the seismic noise, the noise injection will not be such a problem. However, such a sensor will
not damp the common-mode motion of the test and reference masses. An inertial sensor such
as a mass-loaded piezoelectric accelerometer [263] or a wideband accelerometer [264, 265]
can in principle avoid the problem of sensing frame vibrations. Inertial sensing avoids any
coupling with seismic noise. Its ultimate sensitivity is set by electronics noise, thermal noise
and thermal drifts of the accelerometer and the feedback actuators.

Another kind of non-inertial sensor is the capacitance transducer [266]. A convenient
implementation for use on dielectric test mass surfaces consists of two interleaving combs of
parallel conductors etched onto a circuit board. The dielectric constant of the sensed surface
contributes to the capacitance between the combs. A voltage applied to the capacitor will exert
a force on the test mass, while motion of the test mass modulates the capacitance. Thus this
system can provide both sensing and feedback forces. There is no need for lossy magnets or
vanes to be attached to the test mass, so the test mass acoustic losses need not be degraded [249].

5.6.2. Global controls. It is necessary to extract error signals to control the interferometer
lengths or mirror positions to lock the output at the dark fringe and the recycling cavity
or arm cavities on resonant with the laser frequency. In order to avoid the noise due to
the laser power fluctuations and 1/f electronics noise at low frequencies, the measurement
has to be shifted to the quieter MHz domain using modulation–demodulation techniques.
Various modulation configurations have been proposed and extensively studied. Schemes
known as external [176, 267–269] and frontal [270–274] modulation have been particularly
investigated because their modulators are outside the interferometer. Thus, as opposed to
internal modulation, these schemes avoid introducing losses or wavefront distortion within
the interferometer [275]. Although quantum-noise-limited sensitivity has been achieved
with internal modulation at low laser power level [276–278], all the proposed large-scale
laser interferometer detectors will not use this configuration because it introduces losses and
wavefront distortion.

In the external modulation configuration (figure 36), a reference beam from the
antireflective coated face of the beamsplitter is extracted, phase modulated and mixed with the
main interference as in a Mach–Zehnder interferometer. This configuration needs additional
optical components that, in order to avoid noise, must be suspended. The length of the
reference Mach–Zehnder arm must be controlled to maximize the phase sensitivity. The
modulation index m in the external arm is an independent variable and can be set to maximize
J1(m) when m reaches its optimum value of 1.84 radians. A larger modulation index leads
to more power being transferred to higher-order sidebands, which are normally not utilized
by the demodulation process. Furthermore, in power-recycling and arm-cavity configurations,
another modulation is needed to extract error signals to control the recycling mirror and arm
cavities. Because the arm lengths of the interferometer can be equal and because the reference
beam extracted from the back face of the beamsplitter has travelled almost the same path length
as the main beam, this configuration is insensitive to the laser frequency noise.

In the frontal modulation configuration (figure 57) the interferometer has two arms
with a small difference in length. The laser beam is phase modulated before entering the
interferometer. The laser field at the interferometer input may be expressed as a superposition
of three monochromatic plane waves if the modulation index is not too high: the carrier with the
original laser frequency and two sidebands with the frequency shift of the modulation frequency
fm. In the simple Michelson, when the dark fringe condition is fulfilled for the carrier, the
sidebands transmitted to the interferometer are maximum when arm length difference is a
quarter of the modulation wavelength, c/4fm.
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Figure 57. Global control configuration with frontal modulation [272].

If a recycling mirror is added, the modulation frequency and arm length difference must
fulfil two conditions. First, the sidebands must resonant in the recycling cavity, otherwise the
effective modulation index will be very small. Second, the signal must have maximum phase
sensitivity. If Rr and Rm are respectively the intensity reflectivity of the recycling mirror and
the interferometer, the modulation frequency fm and the arm length difference 	l have to
satisfy the following condition [273]:

cos

(
2πfm

	l

c

)
=
√
RrRm. (5.20)

This condition also ensures the optimum enhancement of the modulation index inside the
recycling cavity.

Even with cavities in two arms, one modulator is enough to get all the error signals to
control each mirror. This configuration is simple and rather easy to realize. But because of the
nonsymmetric configuration, the interferometer is sensitive to laser frequency and beam jitter
noise. Frontal modulation was first demonstrated by successfully locking a tabletop prototype
of a power-recycled Michelson interferometer with Fabry–Perot cavities in the arms [272].

5.6.3. Analogue and digital controls. Implementing the control discussed above can be
achieved by either analogue or digital control systems. Analogue control is a well developed
technology. Conventional PID servo control techniques can be used. Most prototype
interferometers use analogue control for local damping, alignment and fringe locking [279].
The results have been successful, with sensitivity of 3 × 10−19 m Hz−1/2 achieved [164] and
generally not limited by servo system noise. However, for large-scale interferometers like
LIGO and VIRGO, there are a large number of degrees of freedom (more than 200) [280]
which need to be controlled and many of them are coupled each other. It is also planned that
many error signals will be monitored and archived, to allow cross-correlation with the signal
from the interferometer output PD. Many automated features are also required. All of the above
points incline towards the use of digital control systems. Since Barone et al [281] introduced
the idea of digital control into the automatic alignment of a Michelson interferometer, they
have demonstrated theoretically and experimentally that all the specification on the noise
requirements, the dynamic range and the control bandwidth can be satisfied using all-
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digital control systems [282]. A fully digitally controlled interferometer prototype has been
successfully operated in Naples, Italy for development and test of some VIRGO subsystems.

Heflin and Kawashima [283, 284] implemented both analogue and digital alignment
control for the TENKO-100 DL interferometer. The results indicate that digital feedback
control for application onto interferometer systems with target search frequency ∼1 kHz or
less is a feasible alternative to analogue feedback systems. It has been shown to reproduce
many of the same desirable features as the analogue systems.

Improved vibration isolation, especially that with very low residual motion, is likely to
allow the undoubted complexity of the control problems discussed above to be substantially
simplified.

5.7. Laser stabilization

Laser interferometers are designed to be sensitive to the optical phase difference of two arms,
and should not be sensitive to common-mode fluctuations of the input light. But in practice,
because of asymmetry between the two arms, fluctuations in the input light will couple into the
output signal. In the frontal modulation scheme some asymmetry is unavoidable. In addition,
differences in the optical components will cause, for example, intensity fluctuations to give
rise to a differential radiation pressure force between both arms. Thus, laser intensity and
frequency fluctuations must be strongly suppressed.

5.7.1. Laser pre-stabilization. The laser frequency noise 	f can couple into interferometer
phase fluctuation 	ϕ via arm length difference 	L [162]:

	ϕ ∼= 2π	f	L/c. (5.21)

The interference of the scattered light with the main beam can also couple the frequency noise
into the output signal [182]. To ensure that frequency noise is sufficiently low that it does not
compromise the sensitivity in the signal frequency regime, an active stabilization system is
necessary to reduce the laser frequency noise.

An effective method of laser frequency stabilization was proposed by Drever and Hall
et al [285], modelled on a technique used in microwave systems which was first proposed
by Pound [286]. In optics the technique is called Pound–Drever–Hall (PDH) modulation.
Light incident on a cavity is frequency modulated. The cavity creates intensity modulation
whose phase depends on the relative frequency between the laser and the cavity resonance. The
reflected light can be thought of as containing two beams: light simply reflected from the cavity
input mirror and the light which has entered the cavity, resonated in the cavity and leaked back
via the input mirror. The cavity leakage has a strong phase shift with respect to the directly
reflected light from the input mirror, depending on the detuning from the cavity resonance. The
interference between these two beams allows the detection of the phase difference, and hence
the frequency difference, of the laser frequency compared with the cavity resonant frequency.
The light from the laser is usually modulated at a RF frequency to shift the measurement to
the quiet high-frequency domain. This helps overcome technical noise such as low-frequency
electronics noise.

The schematic diagram in figure 58 shows a typical laser frequency stabilization scheme.
A small fraction of laser light is phase modulated at a radio frequency by a Pockel cell (PC)
and injected into a reference cavity. The reflected light is detected by a PD and mixed with the
RF reference signal. If the laser frequency is tuned to one of the cavity resonances the reflected
light has two balanced sidebands with opposite phase and a carrier. The mixer output is zero.
If the laser frequency fluctuates the two sidebands will be unbalanced and the mixer will give
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Figure 58. Frequency stabilization.

a signal proportional to the laser frequency difference with respect to the cavity resonance
frequency. This signal can be fed back to a piezomirror (for low-frequency correction) and
an extra-cavity Pockel cell (for high-frequency correction) to lock the laser frequency to the
cavity.

The performance achievable in PDH stabilization is theoretically set by the quantum
limit: the balance of shot noise and radiation pressure fluctuations which deform the reference
cavity. However, in practice the laser shot noise limit is always dominant. This sets a limit to
the frequency noise spectral density Ssn, and if the cavity has no losses this is given by [287]

Ssn(Hz/
√

Hz) = 	ν

J0(β)

√
hν

8ηPi

. (5.22)

Here 	ν is the cavity linewidth, Pi is the power incident on the cavity, ν is the laser frequency,
η is the quantum efficiency of the PD, β is the modulation index, and J0(β) is the zeroth Bessel
function.

Every gravitational wave detection group is involved in the development of laser
stabilization. A frequency noise on the order of ∼10 mHz Hz− 1

2 at 1 kHz has been achieved
with a diode pumped Nd:YAG laser actively stabilized to a rigid reference cavity [288–291].

Another noise source in PDH locking is the mechanical and thermal noise of the reference
cavity. The cavity resonant-frequency fluctuation 	ν is directly linked to the cavity length
fluctuations 	L. That is,

	ν

ν
= 	L

L
. (5.23)

If the reference cavity length is very long the noise contribution from a given cavity length
fluctuation is much less than that of a short cavity. For this reason, the laser frequency is often
stabilized to one arm cavity [163,289] of an interferometer for further stabilization of the light
frequency, and a frequency noise on the order of ∼10 µ Hz Hz− 1

2 at 1 kHz has been achieved.
In recent designs special-purpose mode cleaner cavities have been used [292] (see below) as a
reference cavity. The Max Planck group has stabilized to an interferometer’s power recycling
cavity [173].

5.7.2. Mode cleaners. It is inevitable that the laser beam has geometric fluctuations (beam
jitter) because of the vibration of the laser cavity. Vibration of the injection optics may also
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introduce the beam jitter. The beam jitter noise will couple into the interferometer output signal
if the two arms are not perfectly symmetric. For example, if the beamsplitter is misaligned
from the optimal symmetric orientation by a small angle θ the lateral movement 	x of incident
beam may produce an effective differential displacement signal 	s given by [293]

	s = 4θ	x. (5.24)

A simple way to clean the beam jitter noise of a low-power laser beam is to pass it through
a single mode fibre [162]. In a single-mode fibre geometric fluctuations are transformed
into fluctuations of the power coupling into the fibre. The problem in that because the core
of a single-mode fibre has a small radius (of the order of a few wavelengths) the intensity
inside the core is very high and this generates nonlinear effects including stimulated Brillouin
scattering [294, 295]. This sets an upper limit on the maximum power that can be transported
in a single-mode fibre. In addition, fibres themselves can be subject to vibration which can
introduce additional beam jitter.

Another method to suppress beam jitter is to use a long optical cavity in transmission, called
a mode cleaner. The geometric fluctuations of the laser beam are suppressed because they are
not resonant within the cavity. The geometric beam fluctuations can be described in terms of
higher transverse modes of the resonant cavity. In rectangular coordinates Hermite–Gaussian
functions can be used to describe the eigenmodes of a cavity to a good approximation. Since
the Hermite–Gaussian modes form a complete set, an incident beam with small translational
movement 	x, angular fluctuation 	θ , beam waist size mismatch 	ω0, and beam waist
position mismatch 	b can be expanded in terms of cavity eigenmodes [292] as follows:

Ein = E00

(
	x

ω0
+ j

kω0

2
	θ

)
E10 +

1√
2

(
	ω0

ω0
+ j

	b

kω2

)
(E02 + E20). (5.25)

Here Eij are the amplitudes of the fundamental, first and second eigenmodes, while Ein is the
amplitude of the incident beam and ω0 is the beam waist.

For a cavity consisting of two mirrors with radii of curvature Rc1, Rc2, intensity
transmission T1, T2, and reflectivity R1, R2, separated by a distance L, the fractional
transmission of the incident light amplitude through this cavity is [296]

Tmn =
√
T1T2

1 − √
R1R2

1√
1 + (

2
√
R1R2

1−R1R2
sin((m + n)L))2

, (5.26)

where L = cos−1(
√
(1 − L/Rc1(1 − L/Rc2).

For the fundamental mode, T00 =
√
T1T2

1−√
R1R2

. The amplitude attenuation of the higher-order
modes compared with the fundamental mode is given by√

1 +

(
2
√
R1R2

1 − R1R2
sin((m + n)L)

)2

≈ 2F

π
sin((m + n)L), (5.27)

where F =
√
R1R2

1−R1R2
is the finesse of the cavity. Thus a high-finesse cavity mode cleaner can

strongly suppress the higher-order modes.
However, the power inside a high-finesse mode cleaner cavity will also be much higher

than the incident light power. Thus, thermal damage to the mirror coating becomes a key issue
in defining the cavity configuration. If P is the power we want to transmit, and ω is the beam
radius on the mirrors, then the power density on mirrors is given by I = 2FP

π2ω2 . To avoid optical
damage to the coatings of the mirrors, the spot area should be kept above πω2

min = 2FP
πImax

, where
Imax is the power density limit of the coatings.
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The power transmission of an optical cavity for incident light with frequency offset f from
the resonant frequency is given by the well known Lorentzian response: Tf = T0

1+(2f/	v)2 , where
	ν = c/2LF is the cavity linewidth. The cavity acts as a second-order low-pass filter. With
a large length L and high finesse F the cut-off frequency becomes low. For example, for L =
100 m andF = 1000 the cut-off frequency is 1.5 kHz. Since all the laser fluctuations (amplitude
and frequency) can be understood in terms of the generation of sidebands, a mode cleaner also
acts to suppress such fluctuations at offset frequencies higher than the cut-off frequency.

5.8. Optics

As we have already seen, a fundamental limitation of the sensitivity of interferometric
gravitational wave detectors is shot noise, or photon-counting errors. In order to reduce
shot noise, high light power must circulate in the interferometer. Because of the limitation of
laser power currently available from stabilized CW lasers, power recycling appears to be an
indispensable technique for large-scale instruments.

The maximum power recycling factor is determined by the total losses of the interferometer
when the transmission of the recycling mirror is properly chosen. The losses of the interferom-
eter may result from energy loss due to absorption or scattering of the mirrors, or by imperfect
recombination of the two beams on the beamsplitter due to misalignments and wavefront dis-
tortions. Power losses can arise from imperfect mirror surfaces, coating inhomogeneities,
diffraction losses through limited apertures, beamsplitter and mirror substrate wavefront dis-
tortion and depolarization. The minimization of these losses presents a formidable challenge.

5.8.1. Surface quality. The relevant specifications of the surface figure for optical
components has been considered extensively by all of the groups building large-scale
laser interferometers [196, 297–299]: see, for example, the discussion by Winkler and co-
workers [196], which is based on a requirement for a power build-up in a power-recycled DL
interferometer. The surface deformations can be characterized by their amplitude s and spatial
wavelengthλs . Surface deformation withλs smaller than the beam diameter (micro-roughness)
cause the scattering loss. The relative power loss by scattering due to the micro-roughness is
given by

	P

P
=
(

4π
srms

λ2

)2

, (5.28)

in which srms is the rms value of the micro-roughness amplitude. The tolerable micro-roughness
in a DL interferometer with power recycling gain of 100 and 34 reflections is srms < λ/730.

Surface deformations with λs in the order of the beam diameter contribute to the beam
wavefront distortion and the deterioration of the dark fringe of a perfect interference. The
tolerable deformation in this scale for the same interferometer is srms < λ/230. For surface
deformation with λs larger than the beam diameter (aberration) the demands are slightly less.

Using the computer-mode-based code of Vinet and Hello [297], LIGO group derived
the requirements [299] of the optical components of the 4 km Fabry–Perot Michelson
interferometer. The tolerable rms amplitude of the surface micro-roughness is 0.4 nm. The
surface figure error (spatial wavelength larger than beam diameter) should be less than 0.8 nm.

Techniques of superpolishing are now well established and mirrors exceeding the
tight specifications required have been developed [299–301]. LIGO optics is being
polished by General Optics (GO) and Commonwealth Scientific and Industrial Research
Organization (CSIRO). Metrology indicated that the polished surfaces with rms deviation
(after removeing focus and astigmatism)<1 nm over 20 cm were produced. Surface roughness
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measurements showed a micro-roughness of ∼3 Å for CSIRO substrates and ∼0.9 Å for LIGO
substrates [299].

The mirror coating is also critical for scattering level and wavefront preservation in
the interferometer. VIGO group has reached ∼1 ppm scattering level on 80 mm diameter
coated mirror surface. The peak-to-valley coated surface deformation is ∼14 nm on 70 mm
diameter [302].

5.8.2. Absorption. Optical absorption may take place at dielectric coatings, or inside
the substrate material of transmitting optical components, such as the beamsplitter and the
coupling mirror of Fabry–Perot cavities. Apart from losses introduced by the absorption
itself, the absorbed light power will heat the local area, and consequently deform the optical
components causing wavefront distortion. This arises due to the limited thermal conductivity
of the substrate. The local heating forms a temperature gradient inside the substrate and
consequently introduces radius of curvature changes on surfaces. Winkler et al [196] has
analysed the problem and shown that the change δs of the sagitta by the absorption of the
reflected beam is given by

δs = α

4πκ
Pa, (5.29)

in which Pa is the absorbed light power, α is the thermal expansion coefficient, κ is the heat
conductivity of the substrate material. The crucial quantity for the magnitude of the effect is
the ratio α/κ of thermal expansion to heat conductivity. The α/κ of fused silica and sapphire
are 33 and 28 respectively [196].

When the beam is transmitted through a material with a temperature gradient, because of
a temperature dependence of the refraction index, the refraction indices of the beam axis
and the outer parts of the beam are different and thermal lensing may result. The path
difference δl between beam axis and outer parts of the beam, introduced by thermal lensing,
is approximately [196]

δl ≈ β

4πκ
Pa, (5.30)

in which β = δn/δT is the temperature dependence of the refraction index and Pa is the power
absorption there. It is clear that one wants to keep the ratio β/κ small. The β/κ of fused silica
and sapphire are 1000 and 60 [196]. As regards thermal lensing, sapphire is much better than
fused silica as a substrate material.

5.8.3. Depolarization. The temperature gradient inside the substrate will also produce a stress
distribution. The stresses generate strains in the substrate, which in turn produce refractive
index variations (or birefringence) via the photoelastic effect. Stresses may also be introduced
during the manufacturing process. The magnitude of the birefringence may be defined by the
phase difference δ introduced between orthogonal polarizations. In general, the polarization of
the input beam will not be parallel to one of the principal axes of the birefringent component,
especially since the birefringence may vary locally.

Power loss occurs due to the depolarization of the original input beam polarization. The
measured birefringence of a very homogeneous 10 cm thick Corning 7940 grade 0A fused silica
plate is δ = 1.2◦ ±0.2◦ in the central area [303] which corresponds to a maximum loss of 10−4

per pass. The reported birefringence in sapphire is comparable, about 0.1◦ cm−1 [304]. The
lowest birefringences in coatings obtainable today are between 2 to 10 µrad per reflection—but
so far only for mirrors and beams with a size of a few cm and mm, respectively [197].
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Hello and Vinet [305, 306] have analysed the thermal effects in massive mirrors heated
by high-power laser beams. The complete numerical simulation of thermal effects in a GW
interferometer [307] indicate that the first-generation detectors using silica components may
require substrate absorption coefficients of ∼2 ppm cm−1 ± 15%, and coating absorption
coefficient of ∼2 ppm ± 10%.These values are within present capabilities for mirror and
coating technologies. The reported lowest absorption is a level of less than 1 ppm cm−1

for light of 1 µm wavelength in a fused silica sample [308] and a level of 3.1 ppm cm−1 in a
sapphire sample [309]. The present coating absorption coefficient is ∼1 ppm [302]. Recycling
factors of 300 [173] and 450 [174] have been achieved with power of ∼100 W built up inside
the recycling cavity. This corresponds to >1 kW cm−2 power on the beamsplitter and mirrors.
Expected limits due to thermal effects have still not been reached.

Winkler et al [196,197] and Strain et al [308] with their co-workers at MPI have evaluated
the effects of thermal deformation, thermal lensing and thermally induced birefringence on
a recycling interferometer. Their model assumes that Gaussian-profile laser beams heat the
optical substrates through either uniform bulk absorption or uniform absorption in the coatings,
and that the optics has an aperture much larger than the beam diameter. They concluded
that the power limit set by thermal lensing is a problem only for advanced interferometers
operating at higher power than those presently under development. They find that inherent and
thermally induced birefringence will not be the dominant loss mechanism [197] assuming the
lowest values for absorption and inherent birefringence reported. They propose that resonant
sideband extraction is the best way of reducing the effects of thermal lensing to reach sensitivity
appropriate to a ‘second-generation’ detector [308].

5.9. High-power lasers

The choice of the laser wavelength is an important effect on the design of a long-baseline
interferometer. At short wavelengths, the beam diffracts less and thus the diameter of the
interferometer mirrors and the vacuum tube can be reduced; thereby reducing the cost of
the interferometer. Short wavelengths would also allow a better shot-noise-limited strain
sensitivity which is ∝λ1/2 [189]. Other important factors in the choice of laser wavelength are
the losses (absorption and scattering) in the mirrors and beamsplitter, and the availability of
suitably quiet and powerful lasers.

Contrasting with prototype interferometers which have used argon-ion lasers, all the long-
baseline interferometers will use diode-laser-pumped Nd:YAG lasers (λ = 1064 nm). The use
of Nd:YAG lasers is driven by their much better efficiency and generally quieter characteristics
with regard to practically all types of laser noise [293]. Diode-laser-pumped miniature ring
lasers can fulfil the requirements of a interferometric gravitational wave detector concerning
amplitude and frequency stability [310]. But direct use of these devices in an interferometer
for gravitational wave detector is not possible, because the output power of these system is
limited to values below 2 W CW in a single axial mode [311].

One possible technique to increase the output power is injection locking which coherently
couples a low-power master and a high-power slave oscillator resulting in a high-power
output with the frequency characteristics of the master [312]. As shown in figure 59, this
is accomplished by injecting the output power from the master laser into the slave laser’s
resonator. The PDH reflection locking is used to lock the frequency of the slave laser to the
master’s by adjusting the position of the slave’s mirrors according to the error signal [311].

Application of the injection locking technique to Nd:YAG lasers has been extensively
investigated [311,313–317]. At Laser Zentrum Hannover (LZH), a maximum single-frequency
output power of 20 W has been generated by injection locking to a monolithic ring laser. The
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Figure 59. Schematic for injection locking of two lasers [311].

amplitude and frequency stability is investigated. The amplitude noise reaches the shot noise
level beyond a few MHz. The relaxation oscillation of the miniature ring laser coupling at
∼700 kHz and the disturbance in the excitation of the slave laser caused by the diode laser
power supplies at 80 kHz are two noise sources which could be further stabilized using active
amplitude stabilization [318]. Using fibre-coupled diode lasers as pump sources, 62 W CW
TEM00 mode output has been achieved [319].

At Stanford, an output of 5.5 W single-frequency, ‘nearly diffraction-limited’, TEM00

power was produced by using 50.4 W of pump power. The frequency noise of the unstabilized
master laser of ∼20 Hz Hz− 1

2 at 1 kHz was reproduced at the output of the slave. The relative
intensity noise at the output of the slave is 1.7 × 10−6/

√
Hz which is 10 times higher that that

at the output of the master laser [314]. A 40 W CW, TEM00 diode-laser-pumped, Nd:YAG
miniature-slab laser has been built and demonstrated with 212 W pumping power [320]. A 10 W
laser-diode-pumped Nd:YAG master-oscillator power amplifier is spatially and temporally
filtered by a fixed Fabry–Perot cavity, which produced a 7.6 W TEM00 beam with 1% higher-
order transverse mode content and reduced the relative power fluctuations at 10 MHz to
2.8 × 10−9/

√
Hz.

At VIRGO, a 10 W laser-diode-pumped Nd:YAG laser has been developed by using
injection locking a high-power slave laser to a low power master laster [302]. The master laser
is a 700 mW laser-diode-pumped miniature ring Nd:YAG laser operating at single-frequency.
The slave laser is Nd:YAG laser transverse pumped on one side by 10 fibre-coupled diodes.
TEM00 operation has been achieved with a slight contribution of TEM01 using a diaphragm
inside the X-shaped ring cavity. Using a spatial filter, the TEM00 component can be extracted
to give a 9 W output power for an effective pumped power of 60 W. The 10 W laser will be
frequency pre-stabilized to a reference cavity, and be actively power stabilized.

At TAMA, with 22.3 W pump input from two fibre-coupled laser diodes, combined with
700 mW of power injected by a single-frequency master laser, the injection-locked slave
laser emitted 10 W of linearly polarized TEM00 beam. The measured relative intensity



1416 L Ju et al

noise and the frequency noise are 2 × 10−5/
√

Hz and 50 Hz Hz− 1
2 respectively. When the

frequency of the injection-locked laser is stabilized to an external high-finesse reference cavity,
a minimum frequency noise of 40 mHz Hz− 1

2 was measured from the locking loop error signal
at 1 kHz [313].

At Adelaide, an efficient, medium power, diode-pumped Nd:YAG slab, stable resonator,
ring laser based on a new diode-pumping geometry [321] was developed. Using 18 W of
absorbed laser diode power (20 W diode output power), 5.8 W TEM00 output beam has been
produced [189].

6. Conclusion

Gravitational wave researchers have expected to detect gravitational waves ‘within the next
decade’ for the last three decades. Detectors have been dramatically improved and a steadily
increasing band of physicists has been able to devote more and more resources to the problem.
In the process they have uncovered new physics and new technology. Gravitational wave
detectors are the most sensitive devices ever invented.

Like the Great South Land which was rumoured for centuries before it was discovered,
the spectrum of gravitational waves is a rumoured continent, first to be detected, and then to
be explored. It seems not unreasonable that the exploration will begin within the next decade,
but whatever happens the search will continue to motivate physicists and drive a continuing
process of innovation.
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Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors Phys.
Lett. A 175 273
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[173] Schnier D, Mizuno J, Heinzel G, Lück H, Rüdiger A, Schilling R, Schremple M, Winkler W and Danzmann K

1997 Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection Phys.
Lett. A 225 210

[174] Fritschel P, Gonzalez G, Lantz B and Zuker M 1998 High power phase measurements limited by quantum
noise and application to detection of gravitational waves Phys. Rev. Lett. 80 318

[175] Gray M B, Stevenson A J, Bachor H-A and McClelland D E 1998 Broadband and tuned signal recycling with
a simple Michelson interferometer Appl. Opt. 37 5886

[176] Strain K A and Meers B J 1991 Experimental demonstration of dual recycling for interferometric gravitational-
wave detectors Phys. Rev. Lett. 66 1391

[177] Heinzel G, Stain K A, Mizuno J, Skeldon K D, Willke B, Winkler W, Schilling R, Rüdiger A and Danzmann K
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