#### Near-Infrared Polarimetry in the Galactic Center (Sagittarius A\*)

#### **Banafsheh** Shahzamanian

Andreas Eckart, Monica Valencia-S., G.Witzel, et al.

I. Physikalisches Institute, University of Cologne, Cologne, Germany



Polarised Emission from Astrophysical Jets, June 12-16, 2017, lerapetra, Greece

# The Galactic Center



# The Galactic Center



### The Galactic Center



# Sagittarius A\*

- Compact Radio, Infrared and X-ray source at the GC
- The nearest SMBH
  (8 kpc / ~4x10<sup>6</sup> M<sub>sun</sub>)
- Sgr A\* is under luminous (10 <sup>-9...-10</sup> L\_Edd)



Eckart & Genzel 1996/1997 (first proper motions)

Eckart et al. 2002 (S2 is bound; first elements)

Schoedel et al. 2002, 2003 (first detailed elements)

Ghez et al. 2003 (detailed elements)

**Eisenhauer 2005, Gillessen et al. 2009** (improved elements on more stars and distance)

# Variability of Sgr A\*





#### NIR L'-band (3.8 micrometer) VLT UT4

Radio (1.3mm) APEX

# Polarization of Sgr A\*



Eckart et al. 2006

#### Polarization studies of Sgr A\*

# NACO at Very Large Telescope



Image courtesy: ESO

# Polarimatric imaging with NACO 17.05.2012 Ks-band (2.2 µm) Infrared/Wollaston prism

90°

0°

# Deconvolved image

#### Sgr A\* position

#### Aperture photometry



0.5 0.0 -0.5 -1.0 R.A. ["] offset from Sgr A\*

#### Light curve and polarization measurement



# Light curves and polarization measurements (2004 to 2012)



#### Data Analysis - statistical Approach

# Polarization measurements statistics

#### Pol. degree distribution

#### Pol. angle distribution



All the values are the significant measurements

How do we determine the significant polarization values and also the polarization measurement uncertainty ?



#### How reliable is the polarization angle?





# Stable geometry



Shahzamanian et al. ESO Messenger 2015

## Polarization degree & flux dependency

#### **Degree-Flux correlation**



#### Influence of noise on flux-degree relation



## Polarization degree & flux dependency

#### **Degree-Flux correlation**



# Depolarization in higher fluxes

Mild relativistic boosting and the formation of a partial Einstein ring during the approach of an orbiting source component can lead to bright geometrically depolarized emission during a flare event.



Dovciak, Karas & Yaqoob 2004 Dovciak et al. 2006 Eckart et al. 2006 Broderick & Loeb 2006ab

# Polarized flux distribution



$$p(x) = \begin{cases} 0 : x \le x_{\min} + x_0 \\ \frac{\alpha - 1}{x_{\min}} \cdot \left(\frac{x - x_0}{x_{\min}}\right)^{-\alpha} : x > x_{\min} + x_0 \end{cases}$$

α estimation: maximum-likelihood statistics xmin, x0 estimation: Kolmogorov-Smirnov statistics

# Polarized flux distribution



Shahzamanian et al. 2015b

It also indicates a stable accretion mechanism

#### Conclusion

#### Sgr A\* :

- For high flare fluxes there is a range of polarization degrees of 10-30%.
- For polarized flux density distribution, we find a power-law slope of about 4 which is very close to the slope in the total flux density distribution, indicating that there is a preferred range of intrinsic polarization degrees.
- We conclude that 13deg of polarization angle is a source intrinsic property. The angle may be linked to Jet/wind directions or the corresponding orientation of a temporary accretion disk.

#### Thank you for your attention!