

International Centre for Radio Astronomy Research

Polarised radio emission from X-ray binary jets

James Miller-Jones ICRAR – Curtin University james.miller-jones@curtin.edu.au

THE UNIVERSITY OF WESTERN AUSTRALIA

Scale models of AGN

- Probes of jet launching
- How do jets couple to the accretion flow?
- What is their feedback effect?

Timescales proportional to compact object mass

- XRBs evolve on human timescales: unique probe
- Application to AGN (scaling relations)

Less spatial resolution in R_g, higher time resolution

4

Transient outbursts: discrete ejecta

Early work: bright sources Cyg X-3, SS 433

Hjellming & Johnston (1981)

- 1-20% linear polarisation
- Data during flaring events

Frequency dependence

GRO J1655-40

- More variable at high frequency
- Smoothed and delayed at low $\boldsymbol{\nu}$
- Classical synchrotron bubble
- Some events depart from model
- Not a single bubble

 Unsurprising given
 VLBI images

EVPA/RM evolution

GRO J1655-40 (continued)

- Stable initial EVPA
- B-field perpendicular to jet direction
- Late evolution
- Rapid initial RM evolution: local effects
 - B-field realignment?

"Rotator" events

Smooth rotations

- Several tens of degrees
- Different frequencies move together
- Associated with radio flaring

Magnetic field alignment

Mechanisms for giving B parallel to jet axis

- Helical field
- Lateral expansion
- Velocity shear Bla
- Bow shocks

Curran et al. (2014)

Spatial resolution

Polarised ejecta, depolarised core

Polarised emission from astrophysical jets - 14 June 2017

Jets impacting ISM

XTE J1908+094

structural changes

D: 56606.8

Jets impacting ISM

XTE J1748-288

- Typical synchrotron polarization
- Jets hit a `wall' ~1 arcsec from core
- Orders field, FP starts to rise

Circular polarisation in GRS1915

- Seen subsequent to major ejection events
- Source-integrated levels 0.1-0.4%
- Steep spectrum
- Unrelated to LP or I
- Likely a compact source that is a small fraction of total emission
- Amplitude correlated with times of spectral index changes
 - New ejection events

Also GRO J1655-40, SS 433

- V evolves on a shorter timescale than I
- Higher fractional variability
- · Sign evolves; realignment of field close to BH
- Possible causes:
 - Faraday conversion of LP to CPSynchrotron/gyrosynchrotron

Polarised emission from astrophysical jets - 14 June 2017

Macquart et al. (2000)

1.4 GH

Hard state: steady, compact jets

Determining the quiescent jet axis

1989 outburst of V404 Cyg

- Significant LP detected
- PA stabilised during hard state decay phase

Alignment with jet axis?

VLBI in quiescence determines parallax distance

Polarised emission from astrophysical jets - 14 June 2017

10

5

0

MilliArc seconds

-5

-10

Credit: J Miller-Jones

Tracking time-variable polarisation

Simultaneous multi-wavelength coverage

Preliminary polarisation calibration at the VLA

Probe of the environment

Cyg X-1: jet emission propagates through wind

- Polarisation detected at ϕ =0.5, but not at ϕ =0
- Track around full orbit; RM probes wind

Polarization in NS XRBs

Circinus X-1

- High accretion-rate NS XRB
- Stable PA over 10 years
- A few percent LP
- B aligned perpendicular to jet axis in ejecta – shocks?
- Core has B parallel to jet axis

ICRAR

Summary

XRBs allow us to study jets and jet/disc coupling in real time

- Examine sequence of events
 - Ejecta launching
 - Shocks forming (internal/external)
- Typical LP fractions:
 - ~1% in steady, compact jets
 - 1-25% in transient ejecta
- A few cases with measured CP

- Use polarization as probe of jet structure, stellar wind
- Paucity of spatially-resolved polarization
 - Sensitive VLBI arrays
 - Techniques to deal with rapidly-evolving structure