Radio Polarisation Study of High Rotation Measure AGNs – How to Distinguish Intrinsic from External Sources of Rotation Measure?

Yik Ki (Jackie) Ma Max-Planck-Institut für Radioastronomie (Collaborators: Sui Ann Mao, Aritra Basu, Carl Heiles, Jennifer West)

Max-Planck-Institut für Radioastronomie

Ierapetra 15.06.2017

RM as the Probe of Foreground Physical Environments

$$\Psi = \Delta \chi = 0.81 \lambda^2 \int_{\ell}^{0} n_e(s) B_{||}(s) \, \mathrm{d}s \equiv \mathrm{RM}\lambda^2$$

 Info about the physical environments in the foreground (e.g. AGN jet, NLR, ICM, Milky Way...) is encrypted in RM

Determination of RM

⁽from Ma 2015 Master thesis)

Two (or more) PAs at different λ needed to get RM

$$\lambda^2$$
-fit: PA(λ^2) = PA₀ + RM λ^2

Problems:

 \mathbf{O}

• Relative rotation between two bands could be $\pm n\pi$ radians more / less than simple (upper) picture

nπ-ambiguity!

• Also ignores "Faraday complexity" (deviation of PA from λ^2 -law, and/or de/re-polarisation signature)

Determination of RM

The power of broadband polarisation observations!!

(See also: talks by Talvikki Hovatta, Craig Anderson, & Alice Pasetto)

NVSS RM Catalogue

- RM of 37,543 sources! Excellent sample of background probes of, e.g., Milky Way magneto-ionised medium
- Old L-band: 1364.9 & 1435.1 MHz (bw: 42 MHz each)
- They devised an algorithm in attempt to minimise $n\pi$ -ambiguity... But how effective is it??

(Taylor+2009)

High RM Sources in NVSS RM Catalogue

(Taylor+2009)

- At |b| > 10°:
 - almost 99% have [RM_{NVSS}] < 150 rad m⁻²
 - ~20 with $|RM_{NVSS}| \gtrsim 300 \text{ rad } \text{m}^{-2}!!$ ightarrow

High RM Sources in NVSS RM Catalogue

	NVSS RM is erroneous [Impostors!]	NVSS RM is correct [(Statistical) Outliers]	
Causes	nπ-ambiguity	High RM intrinsic to the sources	Sources lying on special sightlines (behind magnetised clouds in intergalactic medium / Milky Way?)
Why interesting?	May affect foreground RM experiments (e.g. Harvey-Smith+2011; Oppermann+2012; Purcell+2015)	Exotic sources! Unique probe of immediate vicinity of those sources	Identification of magnetised clouds (e.g. Gum Nebula, Smith's Cloud, Sh2-27)
Broadband observations can		Broadband observations + RM synthesis	
give RM free of ambiguity		& QU-fitting can give us insights	
rapetra 15.06.2017		7	Polarised Emission from Astrophysical Jets Me

New Broadband Observations

- Karl G. Jansky Very Large Array (JVLA) in Jul 2014
- L-band (1-2 GHz; 1 MHz channel)
- D array configuration (angular resolution \sim 45")
- Typical rms: 400 µJy/beam

NVSS RM nn-ambiguity

- 8 out of 20 sources (40%) suffered
 nπ-ambiguity in NVSS RM Catalogue!
- Questions to be answered:
 - Why the Taylor+2009 algorithm did not work for some sources?
 - What types of sources are more prone to this nπ-ambiguity?
- My suggestion: Do NOT fully trust the NVSS RM values of individual sources (e.g., do not use them to derotate your PA)

RM Variabilities

- Our new JVLA data: formed "images in NVSS bands"
- Compared with NVSS RM cutout images: apples to apples

RM Variabilities

- Similar to RM variabilities seen in VLBI observations? (e.g., 3C273, 3C279; Zavala & Taylor 2001)
- Possible systematic effects (e.g., NVSS off-axis polarisation leakage)
- New JVLA observations last month: to confirm & characterise RM variabilities with broadband data (~ 3 years cadence)
- Broadband study as alternative / supplementary way to study RM variabilities of AGNs (vs VLBI)!!

Probing AGN Vicinities with RM

- Use AGNs composed of two point sources (two radio lobes?)
- $\triangle RM = RM_1 RM_2$ (Laing-Garrington effect)

 Can also study by RM gradients of extended sources (e.g., see talks by Tuomas Savolainen, Sebastian Knuettel, & Evgeniya Kravchenko)

Probing AGN Vicinities with RM

- Unresolved sources can host multiple Faraday components!
- Broadband observations can "resolve" spatially unresolved sources (QU-fitting: O'Sullivan+2012)

- Two Faraday-thin components:
- Component 1: pol = 1.27 ± 0.01% RM = +95.1 ± 1.0 rad m⁻²

•
$$\triangle RM = 72.8 \pm 1.1 \text{ rad m}$$

Probing AGN Vicinities with RM

- QU-fitting can also recognise more complex polarisation signature
- e.g. Burn slab* (Internal Faraday rotation; Burn 1966), or foreground RM gradient, both probe physical conditions of AGNs

- Double Burn slab*
- Component 1: pol = 19.9 ± 0.6%
 FD = +106.7 ± 0.5 rad m⁻²
- Component 2:
 pol = 22.0 ± 0.6%
 FD = +131.8 ± 0.5 rad m⁻²

*Not distinguishable from foreground RM gradient

Summary

- Broadband studies of high *|RM|* sources away from Galactic plane
- At least some sources from the NVSS RM Catalogue (40% of my sample) suffers $n\pi\text{-}ambiguity$
 - Be skeptical about the listed RM values of individual sources!!
- We noted RM variabilities of our sources when compared with NVSS RM (~ 20 years cadence)
 - Obtained new broadband data last month (~ 3 years cadence), to confirm + characterise the RM variabilities
- Broadband data + QU-fitting can be used as a tool to study the magnetised medium in / around AGN jets