Ultra-compact regions with high polarization are found in quasars

Yuri Kovalev Astro Space Center of Lebedev Physical Institute, Moscow

Brightness of Active Galactic Nuclei

The RadioAstron AGN Tb survey goal:

Measure and study brightness temperature of AGN cores in order to better understand physics of their emission.

The inverse-Compton limit of 10^{11.5} K is confirmed by previous studies if Doppler boosting is involved. VLBI kinematics estimates a typical Doppler boosting to be ~10. RadioAstron survey probes values up to about 10¹⁶ K.

Median $T_b = 10^{12}$ K, max $T_b = 5 \cdot 10^{13}$ K.

Current status: extended until the end of 2019

Direct T_b estimates: AGN survey completed median ~10¹³ K, max ~> 10¹⁴ K

Observed AGNs at 18, 6, 1.3 cm: 248. Detected AGNs: 164 in about 1/3 of 2600 segments. AGNs were detected at projections up to 350,000 km at 18 and 6 cm, up to 180,000 km at 1.3 cm. **Cores of AGNs are found to be 10 times brighter than predicted and observed before. The inverse Compton**

AGN survey analysis Strange cross-hand correlation results: 3C279

- 18 cm, 13 Earth diameters, RadioAstron Effelsberg: Parallel hand signal SNR = 7
- Cross-hand SNR = 11.5
- Typically, we cross-correlate everything with everything to check for possible polarization swap.
- Was that an expected mistake?
- No. Ground-ground results looked "normal". This is a robust and significant measurement.

More examples are found at 6 cm as well, including 16 Earth diameters, RadioAstron-Effelsberg: Parallel hand signal SNR = 8 Cross-hand SNR = 9

How can we explain this extremely high polarization?

Compact core contains a more compact region with high polarization.

Conservative modeling of 3C279 data suggests the following.

The 18 cm result:

Total corr flux density: 20 mJy.

Cross-hand corr flux density: 30 mJy.

 \rightarrow 0.3 mas core with 0.1 mas polarized feature.

\succ The 6 cm result:

Total corr flux density: 50 mJy.

Cross-hand corr flux density: 50 mJy.

 \rightarrow 75 µas core with 25 µas polarized feature.

Another clear case of highly polarized compact core region: 0235+164

0235+164 shows similar (or even more extreme) behavior at 17-26 Earth diameters at 6 cm from two independent measurements at the RadioAstron-Arecibo baselines.

Conservative modeling suggests:

 ➢ 6 cm data: Total corr flux density: 20-50 mJy.
Cross-hand corr flux density: 20-40 mJy.
→ 40-60 µas core with 20-13 µas polarized feature.

An indication of a high fractional polarization (ordered field in an optically thin region?). Difficult to make a firm conclusion.

Summary

✓ Highly polarized very compact regions in the cores of 0235+164 and 3C279 are found at 18 and 6 cm on the RadioAstron Space VLBI baselines up to 25 Earth diameters.

More to come from a dedicated analysis of the RadioAstron AGN survey data.

 This is an indication of highly compact regions with ordered magnetic field in quasar cores.

High fractional polarization possible.

THANK YOU

How to generate high brightness temperature

- Very high Doppler boosting with *typical* δ~100 VLBI kinematics does not confirm it.
- Typical observed VLBI kinematics does not reflects the plasma bulk motion in many cases?
- Continuously "excited" core being most of the time at the inverse-Compton limit or continuous re-acceleration several parsecs away from the core.
- How? Flares do not happen all the time. Magnetic reconnection? Shocks? γ-ray photon flux is not high enough but radio photons could be upscattered to lower energies and increase uv / x-ray flux.
- Requires very efficient acceleration and high magnetic field. Many problems.

Figure 10: Observed source frame brightness temperature values at 18 cm. The ultimate lower limits are estimated following Lobanov (2015) from SVLBI flux density only. No (1+z) correction.

Figure 11: Observed source frame brightness temperature values at 6 cm.

Figure 12: Observed source frame brightness temperature values at 1.3 cm.