A search for polarised emission in jets from high-mass protostars

K.G. Johnston, M.G. Hoare, L. Maud, S. Lumsden, S. Purser & J. Pittard (University of Leeds and Leiden Observatory)

Artist's conception of the massive forming star W33A

Gemini Observatory, artwork by Lynette Cook

Tracers of protostellar jets from massive stars

Radio continuum (perp. to disk in blue)

Johnston et al. (2013, in prep.)

Vlemmings et al. (2010)

Non-thermal ionized jets from massive stars

Non-thermal ionized jets from massive stars

Spectral index of cm continuum from massive young stars

Non-thermal synchrotron emission from shocks in jet or where jet impacts on surrounding cloud

Questions:

Why is synchrotron emission only seen towards some jets and not others?

How is ~500-1000 km/s material accelerated to relativistic speeds? (Fermi/Diffusive shock acceleration?)

Hatched: jet-like sources **Blue**: jet knot/lobes 75% of observed jet lobes had negative spectral index

HH 80-81:THE example of linear polarisation in a protostellar jet

Polarisation degree: 10-30%

Carrasco-Gonzàlez et al. (2010)

Our e-MERLIN observations

- Observations of three massive forming stars:
 - 1) W3 (H₂O)-TW
 - 2) Cepheus A 2
 - 3) W75 N
- L band 1.5 GHz (1.31-1.76 GHz)
- 450 MHz bandwidth
- Including Lovell telescope
- Spatial resolution ~0.15 " (~100-200 au at 0.7-1.3 kpc)
- Expected noise: ~10 µJy/beam

W75 N = nearby region containing massive young stellar objects (YSO)

VLA 1 likely powers large-scale outflow (Hunter et al. 1994; Shepherd et al. 2003)

distance = 1.3 kpc (Rygl et al. 2012) VLA 1-3: ZAMS B0-2 stars (Shepherd et al. 2004)

Carrasco-Gonzalez et al. (2010)

Water and 6.7GHz methanol masers and 1.3cm radio continuum Surcis et al. (2009)

Results: Total intensity images

Unfortunately, no polarised emission detected (beautifully empty Q,U and V maps!)

Results: no linear polarisation detected

Linear fractional polarisation is <17% in VLA 3

Upper limits determined from peak intensity of source and 4 x map rms

Possible explanations of the low-polarisation degree for non-thermal emission:

1. Knots are more turbulent than in the HH80-81 jet

- \rightarrow more disorganised magnetic field
- \rightarrow lower polarisation degree
- 2. The knots have high electron densities or magnetic fields
 - \rightarrow strong Faraday rotation of polarisation angle
 - \rightarrow lower polarisation degree (in wide band)

Results: spectral indices

Previously, 8.5 – 15GHz spectral index of VLA 1 had suggested possible non-thermal emission

 $\alpha = 0.09 \pm 0.03$ $\alpha = -0.03 \pm 0.06$ $\alpha = 0.2 \pm 0.03$ $\alpha = 0.3 \pm 0.05$

Spectral indices calculated with larger frequency baseline are all **thermal**

Calculated spectral indices between 1.5 and 15.0 GHz data

Summary

- e-MERLIN observations of three massive forming stars with jets to search for linearly polarised emission
- L band observations at 1.5 GHz
- Spec. res. ~0.15" (100-200 au at 0.7-1.3 kpc)
- First results for W75N region
- Linearly polarised emission is not detected (<17% for core VLA 3)
- Spectral indices for core and knots are all consistent with free-free emission
- Conclusion: move on to other two objects!