Probing the magnetic fields in 3C273 through Faraday rotation observations

Talvikki Hovatta Tuorla Observatory, Finland

Tuomas Savolainen, Shane O'Sullivan, Alexander Tchekhovskoy, Ivan Marti-Vidal Tuomas Savolainen, Matt Lister, Dan Homan, Margo Aller, Hugh Aller

Turun yliopisto University of Turku

3C273 Faraday rotation on parsec scales

3C273 Faraday rotation on parsec scales

3C273 Faraday rotation on parsec scales

3C273 Faraday rotation at 43-86 GHz

3C273 Faraday rotation at 1mm

ALMA observations reveal a large RM at 1mm

Two plausible models that explain the Q/U behavior

Sokoloff et al. 1998, O'Sullivan et al. 2017

Comparison to simulations may help to distinguish the models

Magnetically arrested disk (large-scale magnetic field)

Standard and Normal Evolution (no large-scale poloidal field needed)

Conclusions

- We detect a high RM of ~ 3.8 x 10⁵ rad/m² in our 1mm ALMA observations of 3C273
- Together with earlier results, this indicates that RM as a function of wavelength behaves as expected for a helical magnetic field in a conical jet (see also Jorstad et al. 2007, O'Sullivan & Gabuzda 2009, Kravchenko et al. 2014)
- Outlook: EHT observations to resolve the Faraday rotation region

