Probing the Innermost Regions of AGN jets and their Magnetic Fields with RadioAstron

José L. Gómez (IAA-CSIC), A. Lobanov (MPIfR), G. Bruni (MPIfR), Y. Kovalev (ASC), et al. on behalf of the Polarization RadioAstron KSP team

A KSP FOR POLARIMETRIC SPACE-VLBI WITH RADIOASTRON

Early Science						
Target	Date	Band		Status		
0642+499	9 March 2013	L	Lobanov et al. (2015)			
AO-1, AO-2, and AO-3 Observations						
Target	Date	Band	Correlation	Status		
BL Lac	29 Sep. 2013	L	Yes	Imaging		
BL Lac	11 Nov. 2013	K	Yes	Gómez et al. (2016)		
3C273	18 Jan. 2014	K	Yes	Bruni et al. (in press)		
3C273	13 June 2014	L	Yes			
3C279	10 March 2014	K	Yes			
OJ287	04 April 2014	K	Yes	Gómez et al. (in prep)		
0716+714	3 January 2015	K	Yes			
3C345	30 March 2016	L	No			
OJ287	16 April 2016	L	No			
OJ287	25 April 2016	K	No			
3C345	4 May 2016	K	No			
Performed AO-4 Observations						
Target	Date	Band	Со	nplementary		
3C454.3	8 October 2016	K	GMVA 3 mm October 2016			
CTA102	17 October 2016	K	GMVA 3 mm October 2016			
OJ287	7 March 2017	K	GMVA+ALMA. EHT+ALMA 2017			

Performed AO-4 Observations					
Target	Date	Band	Complementary		
3C454.3	8 October 2016	K	GMVA 3 mm October 2016		
CTA102	17 October 2016	K	GMVA 3 mm October 2016		
OJ287	7 March 2017	K	GMVA+ALMA, EHT+ALMA 2017		

RA Approved AO-5 (2017-2018) Observations					
Target	Date	Band	Complementary		
BL Lac	September 2017	K	GMVA 3 mm October 2017		
3C120	January 2018	K	GMVA 3 mm October 2017		
3C279	Jan-Feb 2018	K	GMVA+ALMA, EHT+ALMA 2018		
3C273	Feb-May 2018	K	GMVA+ALMA, EHT+ALMA 2018		
OJ287	22-27 April 2018	K	GMVA+ALMA, EHT+ALMA 2018		
M87	March 2018	K,L	Nearby AGN KSP, GMVA, EHT 2018		

Unique opportunity for first time *polarimetric* VLBI-imaging at the highest angular resolution (*20-40 µas*) combining 3 wavelengths (1.3 mm, 3 mm, and 1.3 cm) with *almost matching beam and quasi-simultaneously* in an AGN.

RadioAstron observations of **BL Lac at 1.3 cm** were performed in November 11, 2013.

BL Lac was observed together with 15 ground antennas: EF, MH, ON, SV, ZC, MC, BD, BR, HN, KP, LA, NL, OV, PT, MK.

RadioAstron observations of **BL Lac at 1.3 cm** were performed in November 11, 2013.

BL Lac was observed together with 15 ground antennas: EF, MH, ON, SV, ZC, MC, BD, BR, HN, KP, LA, NL, OV, PT, MK.

Ground-space fringes up to projected baseline distance of 7.9 Earth's diameters in projection.

This opens the possibility that the core is a recollimation shock at ~40 μ as for the jet apex, in a pattern that includes also components K1 and K2 at ~100 μ as and ~250 μ as, respectively.

RMHD simulations reproduce the relative distance between components Core, K1, and K2 as recollimation shocks.

Gómez et al. (2016) Unresolved core component has an observed brightness temperature of $T_b > 2 \times 10^{13}$ K. **BL Lac** $\lambda = 1.3$ cm Nov. 11, 2013 0.4 **Total Intensity** $\overline{\mathrm{T}}_{b}$ <3×10¹⁴ K 14 $T_b^{obs} = 1.6 \times 10^{12} \,\mathrm{K}$ 0.2 $\log_{10} T_b[K]$ $T_b^{obs} > 2 \times 10^{13} \, K$ Relative Declination (mas) 0.0 $5.8\!\times\!10^{11}\,\mathrm{K}$ 10 -0.2 $10^{11} \, {\rm K}$ 2 3 7 0 5 6 q [G λ] This is further supported by estimations from the -0.4 visibilities amplitudes and their errors (Lobanov 2015). From estimated $\delta = 7.2$ we obtain an intrinsic Super -0.6 brightness temperature $T_{b,int}>3\times10^{12}$ K, well FWHM 21 µas íniform above the inverse Compton limit. 0.2

0.1

0.0

-0.1

Relative Right Ascension (mas)

-0.2

-0.3

-0.4

RadioAstron observations of **OJ287 at 1.3 cm** were performed in April 4, 2014.

OJ287 was observed together with 12 ground antennas including the EVN, KVN, and GBT.

Ground-space fringes (SNR~50) have been detected throughout the whole experiment, $\stackrel{\scriptstyle ?}{_{\scriptstyle 0}}$ reaching ~4 Earth diameters in projected $\stackrel{\scriptstyle ?}{_{\scriptstyle 0}}$ length. 0851+202 at 22.236 GHz in I 2014 Apr 04

Beam FWHM 0.125x0.056 mas at 50.638 deg.

RadioAstron observations of **OJ287 at 1.3 cm** were performed in April 4, 2014.

OJ287 was observed together with 12 ground antennas including the EVN, KVN, and GBT.

Ground-space fringes (SNR~50) have been detected throughout the whole experiment, reaching **~4 Earth diameters** in projected length.

Ground-space fringes detected at a record spacing of **15.2 Earth diameters** (April 18th, SNR~11.5) by the RadioAstron Survey (PI Kovalev).

OJ287 April 4, 2014 0 4 \bigcirc 104 RadioAstron 1.3 cm 104 -10^{4} 0 \cup (10⁶ λ)

0851+202 at 22.236 GHz in Pl 2014 Apr 04

Optical double-peaks of OJ287 every ~12 years have been interpreted as the orbital period of a binary SMBH (Lehto & Valtonen 1996).

Optical thermal flares produced when the secondary SMBH impacts the disk around the primary SMBH.

Orbital modeling (Valtonen et al. 2011, 2016) requires a compact binary with:

- Primary SMBH of (1.83±0.01)×10¹⁰ M_{\odot}
- Secondary SMBH of (1.5±0.1)×10⁸ M_{\odot}
- Eccentric orbit (ϵ =0.700±0.001) with a semi-major axis of 0.056 pc (~13 µas).
- Orbital shrinkage due to gravitational wave emission (at 2% accuracy level).

Alternatively, the innermost jet structure may result from the precession of a tilted accretion disk.

RMHD simulations of a thin accretion disk tilted by 60 deg. relative to the BH spin axis.

The disk and the jets precess at different rates, leading to quasi-periodic disk-jet interactions that could potentially account for the periodicity seen in OJ287 light curves.

SUMMARY

- 14 RadioAstron observations carried out within our polarization KSP during AO-1, AO-2, AO-3, and AO-4. Continued observations throughout AO-5.
- **BL Lac imaged at** L and K-bands. Ground-space fringes detected up to 8 D_E (7 D_E at L-band), achieving a maximum **angular resolution of ~20 µas**.
 - Evidence for emission upstream the core, and a pattern of three recollimation shocks (40, 100, 250 μ as) that includes the core.
 - The *intrinsic de-boosted* brightness temperature of the core exceeds 3×10^{12} K, or ~6 times larger than the inverse Compton limit.
 - The core area shows a point symmetric structure in RM and EVPAs, suggesting it is **threaded by a helical magnetic field**.
- OJ287 imaged with an angular resolution of ~10 μ as (15.2 D_{*E*}), suggesting a helical jet seen at small viewing angle, compatible with the supermassive binary black hole model.
- Confirmed polarization capabilities of RadioAstron for observations at 18 cm (Lobanov et al. 2015) and 1.3 cm (Gómez et al. 2016).

RadioAstron allows polarization imaging with angular resolutions of ~10 µas