

Determining the Directions for the Jet Poloidal B-field and BH Rotation in AGN Denise Gabuzda (University College Cork) Circular polarisation (CP) of synchrotron radiation – very low (< 0.1%) for B fields thought to be typical (~ tenths of mG)

Observed CP ~ a few tenths of a %, usually in VLBI core (e.g. Homan & Lister 2006)

Most likely mechanism generating CP: "Faraday conversion" as EM wave travels through magnetised plasma (Jones & O'Dell 1977)

Delay of E_{par} relative to E_{perp}

⇒ Conversion of smallamount of linear pol(LP) to CP

Angle between plane of LP (E) and local B field determines sign of CP produced. This angle must differ from 0 or 90° to get conversion (otherwise no delay!).

Helical B-field geometry can facilitate conversion – some of LP emitted near "back" of helix is converted to CP as it passes through "front" of helix (Wardle & Homan 2002, Ensslin 2003, Gabuzda et al. 2008, Homan 2012).

Angle between background synchrotron E and foreground
B is determined by (1) pitch angle of the helical field,
(2) direction of azimuthal B (Bφ) and (3) direction of
poloidal B (Bp) (Gabuzda et al. 2008).

Analysis technique proposed by Gabuzda et al. (2008):

1) Pitch angle – from observed LP structure

- "small" pitch angle (< 45°) \Rightarrow dominant B field along jet
- "large" pitch angle (> 45°) \Rightarrow dominant B field \perp to jet
- Direction of azimuthal B (Bφ) from direction of RM gradient across jet (Faraday RM ∝LOS B field)
- 3) Direction of poloidal B (Bp) from above + sign of CP

Yields full 3D info about helical field, can infer direction of rotation of accretion disk on the sky (assuming Bp is wound up to yield Bφ).

We have applied this analysis to data for all 12 AGNs with reliable data for

- \checkmark Clear LP structure \Rightarrow pitch angle regime
- \checkmark Transverse RM gradient \Rightarrow direction of B ϕ
- \checkmark Sign of CP \Rightarrow direction of Bp

Direction of rotation of BH+accretion disk and direction of Bq described as CW or CCW on the sky

CW rotation = angular velocity vector Ω inward, CCW rotation = Ω outward

Sources of data: Homan & Lister 2006; Vitrishchak et al. 2008; Hovatta et al. 2012; Gabuzda et al. 2014, 2015, in prep

Measured

Derived

Source	Pitch	Βφ	СР	Bp	Rotation	Ω
0133+476	Large	CCW		Out	CW	In
0300+470	Large	CW		In	CW	In
0333+321	Small	CW		Out	CCW	Out
0735+178	Large	CW		In	CW	In
0945+408	Large	CW	+	Out	CCW	Out
1156+295	Large	CW		In	CW	In
3C273	Small	CCW		In	CCW	Out
1334-127	Small	CCW	+	Out	CW	In
1504-166	Large	CW	+	Out	CCW	Out
1633+382	Large	CW		In	CW	In
1749+096	Large	CW		In	CW	In
2230+114	Small	CW		Out	CCW	Out

Summary of results:

• Statistically equal numbers of inward (6) and outward (6) poloidal B fields $\sqrt{}$

• Statistically equal numbers of central BHs and accretion disks rotating CW (7) and CCW (5) on sky $\sqrt{}$

• 12 of 44 AGNs with detectable VLBI CP have significant transverse RM gradients (27%) — seems a fairly high fraction, supporting idea CP and RM have same origin (helical jet B field)

 First time both Bφ and Bp have been reliably determined and used to infer the direction of rotation of central BH and its accretion disk. "Cosmic Battery" model of Christodoulou et al. (2016); Contopoulos et al. (2017), Yiannis' talk on Monday

Poynting–Robertson drag generates currents in the accretion disk in direction of rotation, linking the directions of rotation (Ω) and Bp:

CW rotation on sky \Rightarrow inward Bp along jet \Rightarrow **CW** B ϕ

CCW rotation on sky \Rightarrow outward Bp along jet \Rightarrow CW B ϕ

When loops of B field generated by this "battery" (e.g. Contopouloset al. 2017) are wound up, they produce

CW Bφ/inward current near jet axis (dominates on small scales)

CCW Bφ/outward current in more extended region farther from jet axis (dominates on large scales)

Can we see this pattern?

 ✓ Dominance of CW Bφ (inward current) on parsec scales.

✓ Evidence for correlation between Ω and Bp.

Also reflected in collected parsec-scale data:

50 AGNs with significant transverse RM gradients
35 CW Bφ, 15 CCW Bφ
Prob. Chance ~ 0.33%

Source	Ω	Вφ	Bp
0133+476	In	CCW	Out
1334-127	In	CCW	Out
0300+470	In	CW	In
0735+178	In	CW	In
1156+295	In	CW	In
1633+382	In	CW	In
1749+096	In	CW	In
3C273	Out	CCW	In
0333+321	Out	CW	Out
0945+408	Out	CW	Out
1504-166	Out	CW	Out
2230+114	Out	CW	Out

Summary

• If AGN jets carry helical B fields, which give rise to clear LP structure, transverse RM gradients and CP from Faraday conversion in the helical field, can use this to derive direction of $B\phi$ and Bp.

• $Bp + B\phi$ together yield direction of rotation of the central BH and its accretion disk (assumes Bp has been wound up to yield $B\phi$)

• Analysis for 12 AGNs with all necessary data indicates statistically equal numbers of inward and outward Bp, and of CW and CCW rotation on the sky, as expected.

• Evidence that Bp and the direction of rotation are linked, suggesting action of a mechanism such as the "cosmic battery" model of Christodoulou et al. (2016).

• This mechanism gives rise to a system of B fields and currents resembling a giant co-axial cable!

Thanks for your attention —

Questions welcome!