

Electric currents along astrophysical jets

Ioannis Contopoulos

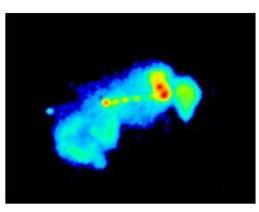
Research Center for Astronomy and Applied Mathematics, Academy of Athens National Research Nuclear University MEPhl

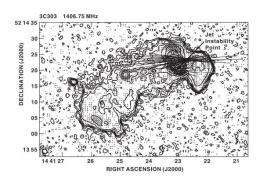
Large scale magnetic fields along astrophysical jets

Do they exist?

Can we observe them?

Electric currents along astrophysical jets

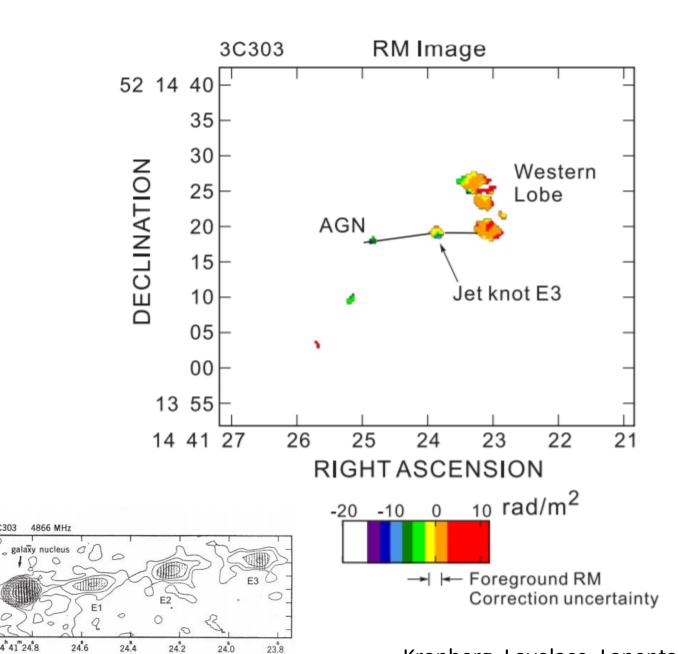

Can we observe them?


New Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

IN BRIEF 15 June 2011

Universe's highest electric current found



A COSMIC jet 2 billion light years away is carrying the highest electric current ever seen: 10¹⁸ amps, equivalent to a trillion bolts of lightning.

Philipp Kronberg of the University of Toronto in Canada and colleagues measured the alignment of radio waves around a galaxy called 3C303, which has a giant jet of matter shooting from its core. They saw a sudden change in the waves' alignment coinciding with the jet. "This is an unambiguous signature of a current," says Kronberg.

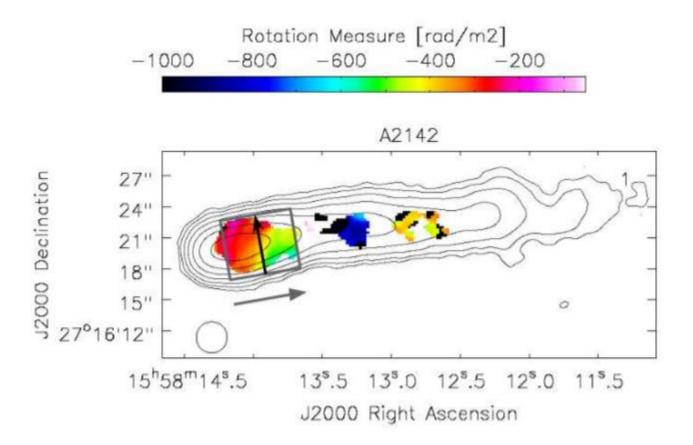
The team thinks magnetic fields from a colossal black hole at the galaxy's core are generating the current, which is powerful enough to light up the jet and drive it through interstellar gases out to a distance of about 150,000 light years (arxiv.org/abs/1106.1397).

3C303

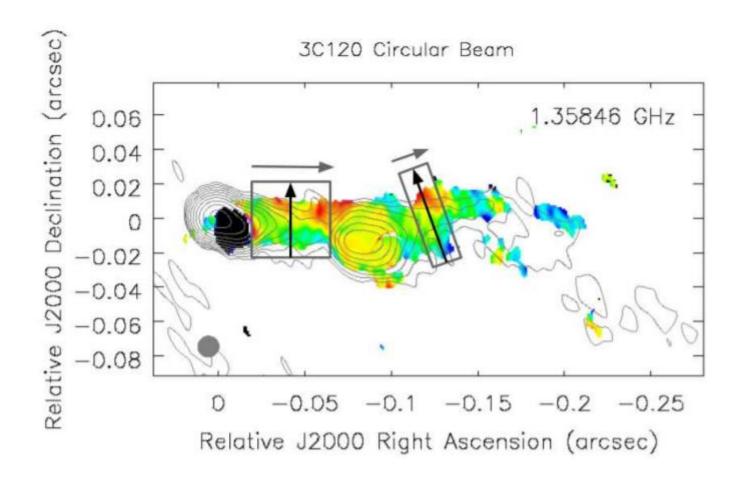
14 41 24.8

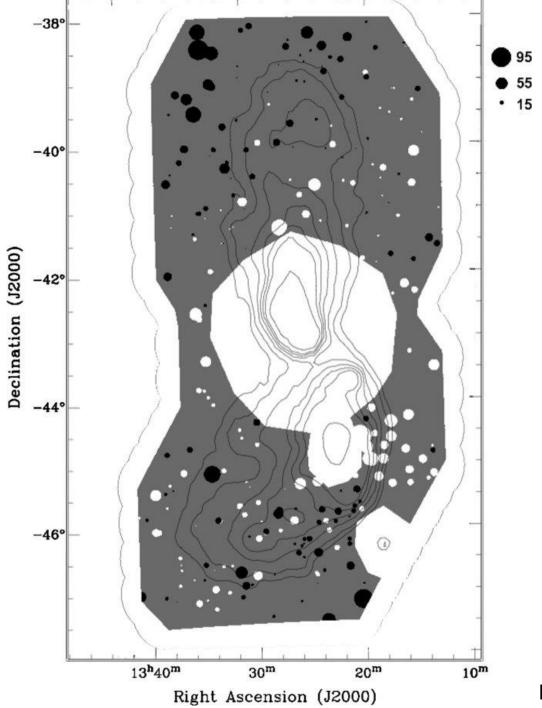
52°14'20.0"

19.0"


18.0"

DECLINATION


4866 MHz


RIGHT ASCENSION

Kronberg, Lovelace, Lapenta, Colgate, ApJL 2011

Gabuzda and collaborators; Govoni et al. A&A

Feain et al. ApJ 2009

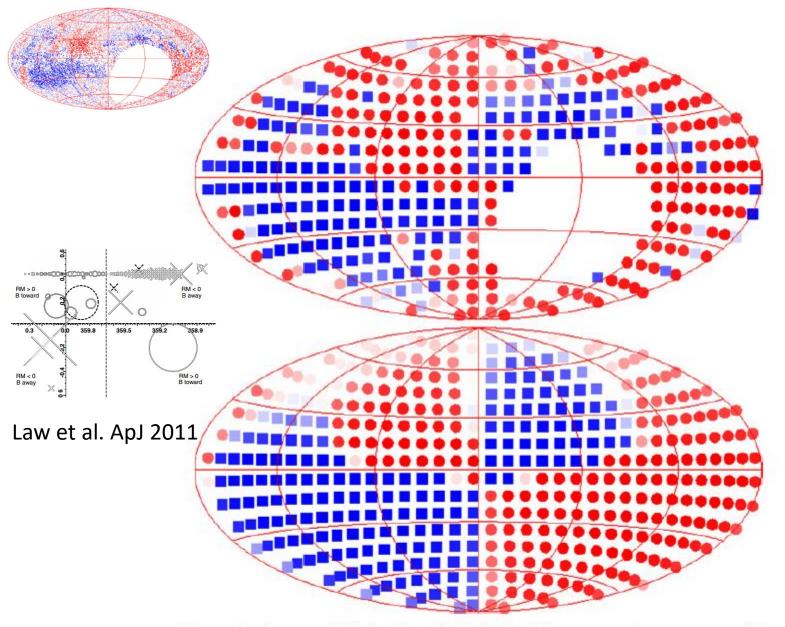


Figure 8. Average RMs in bins. Red circles (blue squares) represent positive (negative) RMs. The color intensity reflects the absolute magnitude. Top: NVSS data. Bottom: best-fit model.

37,543 VLA sources, Pshirkov et al. ApJ 2011

Christodoulou et al. 2015: Outflowing Electric Currents in Extragalactic Jets

Table 1. Transverse RM gradients on decaparsec to kiloparsec scales

No.	Object	z	RM gradient	Projected distance	Instrument	References [†]		
	name		direction	from core (pc)	and frequencies			
(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	Firm Gradients, Significances $\geq 3\sigma$							
1	0716+714	0.127	CCW*	3–35	VLBA, 4.6-15 GHz	Mahmud et al. (2013)		
					1.4-1.7 GHz	Healy (2013)		
2	0923 + 392	0.695	CCW*	20	VLBA, 4.6-15 GHz	Gabuzda et al. (2014b)		
3	5C4.114 (N)	$> 0.023^a$	CCW	> 2000	VLA, 1.4-4.9 GHz	Bonafede et al. (2010);		
						Gabuzda et al. (2015b)		
4	5C4.114 (S)	$> 0.023^a$	CCW	> 1500	VLA, 1.4-4.9 GHz	Bonafede et al. (2010);		
					•	Gabuzda et al. (2015b)		
5	A2142A	0.091	CCW	$to \simeq 10,000$	VLA, 4.5-8.5 GHz	Govoni et al. (2010); this paper		
6	1652+398	0.034	CCW	20	VLBA, 8.4-1.7 GHz	Croke et al. (2010)		
7	1749+701	0.77	CCW*	75–100	VLBA, 1.4-1.7 GHz	Mahmud et al. (2013)		
8	3C380	0.692	CCW	70-210	VLBA, 1.4-5.0 GHz	Gabuzda et al. (2014a)		
9	2037+511	1.687	CCW*	40	VLBA, 4.6-15 GHz	Gabuzda et al. (2014b)		
	Tentative Gradients							
1	0156-252	2.09	CCW	4000	VLA, 1.4-8.5 GHz	Athreya et al. (1998)		
2	3C120	0.033	CCW	25-80	VLBA, 1.4-1.7 GHz	Coughlan et al. (2010); this paper		
3	M87	0.004	CCW	60, 960, 1400	VLA, 8-43 GHz	Algaba et al. (2013)		
4	5C4.152	<i>a</i>	CCW	15"	VLA, 4.5-8.3 GHz	Bonafede et al. (2010); this paper		
5	Cen A	0.0018	CCW	130,000	ATCA, 1.3-1.5 MHz	Feain et al. (2009); this paper		
6	3C303	0.141	CCW	20,000	VLA, 1.4-8.5 GHz	Kronberg et al. (2011)		
7	3C465	0.0313	CCW	40,000-100,000	VLA, 4.5-8.9 GHz	Eilek & Owen (2002)		

[†] References in bold indicate papers that present quantitative analyses of the statistical significance of the *RM gradients in the CW direction are present closer to the jet base.

*Exact redshift not available.

Christodoulou et al. 2015: Outflowing Electric Currents in Extragalactic Jets

 Table 1. Transverse RM gradients on decaparsec to kiloparsec scales

No. (1)	Object ame (2)	(3)	RM gradi	Proj ed tance (pc) Fi Cr ents (gn)	nstrument a f uei (6)	References	
	0716+714	0.127	CCW*	3=35	VLBA, 4.6-1 GHz	Ma nud et at. (2013)	
					1.4-1.7 G	Healy (2013)	
2	0923 + 392	0.695	CCW*	20	VLBA, 4.6-15 GHz	Gabuzda et al. (2014b)	
3	5C4.114 (N)	$> 0.023^a$	CCW	> 2000	VLA, 1.4-4.9 GHz	Bonafede et al. (2010);	
4	5C4.114 (S)	> 0.023a	c v	> 1	VLA, 1.4-4.9 GHz	Guzda et al. (2015b) afede et al. (2010); et al. (2015b)	
5	A2142A)9	C V	$to \simeq 10, 0$	VLA, 4 8 H	ovoi et al 2010); this paper	
6	1652+39	03.	CV	20	/LBA, 8 /7	rok t al. (2010)	
7	1749+701	0.77	CCW*	75–100	VLBA, 1.4-1.7 GHZ	Mahmud et al. (2013)	
8	3C380	0.692	CCW	70–210	VLBA, 1.4-5.0 GHz	Gabuzda et al. (2014a)	
9	2037+511	1.687	CCW*	40	VLBA, 4.6-15 GHz	Gabuzda et al. (2014b)	
Tentative Gradients							
1	0156-252	2.00	CCW	4000	VI 1 18.5 GHz	Athreya et al. (1998)	
2	3C1	0	W	25–80	VLI , 1 1.7 GHz	Cough et al. (2010); this paper	
3	M8 📙	0 14	W	9 0	1, 3	b (2013)	
4	5C4.		W		VL 4, 5	E afe et a 10), this paper	
5	Cen	0. 18	W W	13 00		eail tal 20); this paper	
6	3C303	0.741	€ W	20,000	VLA, 1.4-8.5 GIZ	Kronoerg et al. (2011)	
7 * D-6	3C465	0.0313	CCW	,000-100,000	VLA, 4.5-8.9 GHz	Eilek & Owen (2002)	

[†] References in bold indicate papers that present quantitative analyses of the statistical significance of the corresponding RM gradients.

^{*}RM gradients in the CW direction are present closer to the jet base.

^a Exact redshift not available.

Christodoulou et al. 2015: Outflowing Electric Currents in Extragalactic Jets

Table 1. Transverse RM gradients on decaparsec to kiloparsec scales

No.	Object	Z	RM gradient	Projected distance	Instrument	References [†]		
	name		direction	from core (pc)	and frequencies			
(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	Firm Gradients, Significances $\geq 3\sigma$							
1	0716+714	0.127	CCW*	3–35	VLBA, 4.6-15 GHz	Mahmud et al. (2013)		
					1.4-1.7 GHz	Healy (2013)		
-	3+392	0.695	CCW*	20	VLBA, 4.6-15 GHz	Gabuzda e l. (2014b)		
В	5(112	>		700	VI 1.00G	le 2		
4	5(.1. (S)	> 023a		>1500	1. 4.9 G 2	ona e e l. (2010)		
5	A2142A	0.091	CCW	$to \simeq 10,000$	VLA, 4.5-8.5 GHz	Govoni et al. (2010); this paper		
6	1652 + 398	0.034	CCW	20	VLBA, 8.4-1.7 GHz	Croke et al. (2010)		
7	1749+701	0.77	CCW*	75–100	VLBA, 1.4-1.7 GHz	Mahmud et al. (2013)		
8	3C380	0.692	CCW	70–210	VLBA, 1.4-5.0 GHz	Gabuzda et al. (2014a)		
9	2037+511	1.687	CCW*	40	VLBA, 4.6-15 GHz	G uzd t al. (2014b)		
	/A	$\wedge \Box$		Toat	ants			
1	0156-252	<u> </u>	CCW	000	7 / 7 /-8.5 Gl	hrey et al. (1998)		
2	3C120	33	CCW	-80	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ugh et ar (2010); this paper		
3	M87	0_4_	CCW	60, 10	VI_8-4	gab t al. (2013)		
4	5C4.152	a	CCW	15"	VLA, 4.5-8.3 GHz	Bonafede et al. (2010); this paper		
5	Cen A	0.0018	CCW	130,000	ATCA, 1.3-1.5 MHz	Feain et al. (2009); this paper		
6	3C303	0.141	CCW	20,000	VLA, 1.4-8.5 GHz	Kronberg et al. (2011)		
7	3C465	0.0313	CCW	40,000-100,000	VLA, 4.5-8.9 GHz	Eilek & Owen (2002)		

[†] References in bold indicate papers that present quantitative analyses of the statistical significance of the *RM gradients in the CW direction are present closer to the jet base.

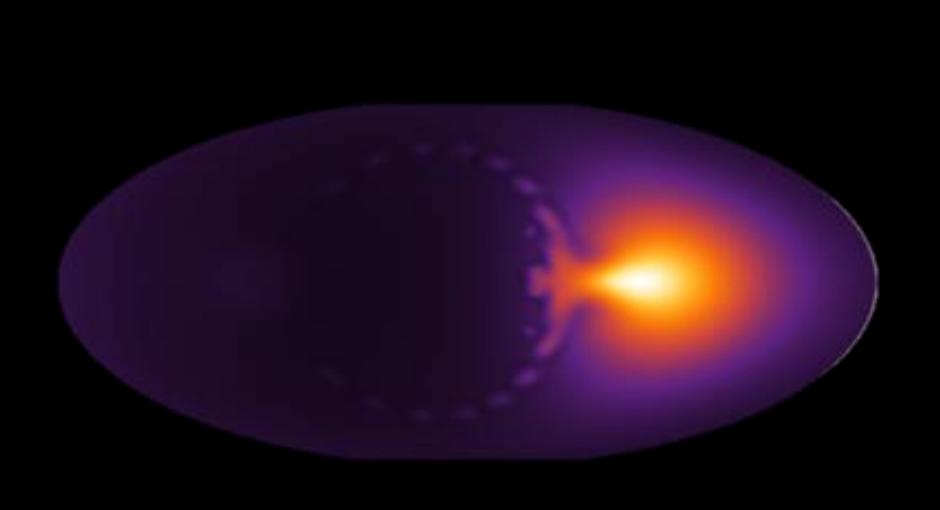
*Exact redshift not available.

Large scale magnetic fields along astrophysical jets

Do they exist? Yes!

Where do they come from?

The Cosmic Battery


Contopoulos & Kazanas 1998

Contopoulos et al. 2006, 09, 15

Christodoulou et al. 2008, 16

Kylafis et al. 2012

Gabuzda et al. 2012

Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes

I. Contopoulos^{1,2★}, A. Nathanail^{3,4}, A. Sądowski^{5,6,7}, D. Kazanas⁸, R. Narayan⁹

- ¹ Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens 11527, Greece
- National Research Nuclear University (MEPhI), Moscow 115409, Russia
- ³ Institute for Theoretical Physics, D-60438 Frankfurt, Germany
- ⁴ Humboldt Fellow
- MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- ⁶ Einstein Fellow
- Present address: Akuna Capital, 585 Massachusetts Ave., MA 02139, USA
- ⁸ Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
- ⁹ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

30 May 2017

The conservation laws for gas density, energy and momentum, radiation energy and momentum, and photon number can be written in covariant form,

$$(\rho u^{\mu})_{:\mu} = 0, \tag{7}$$

$$(T^{\mu}_{\nu})_{:\mu} = G_{\nu},\tag{8}$$

$$(R^{\mu}_{\ \nu})_{;\mu} = -G_{\nu},\tag{9}$$

$$(nu^{\mu})_{:\mu} = \dot{n},\tag{10}$$

where ρ is the gas density in the comoving fluid frame, u^{μ} is the gas four-velocity, T_{ν}^{μ} is the MHD stress-energy tensor,

$$T^{\mu}_{\nu} = (\rho + u_{\text{int}} + p + b^2)u^{\mu}u_{\nu} + (p + \frac{1}{2}b^2)\delta^{\mu}_{\nu} - b^{\mu}b_{\nu}, \tag{11}$$

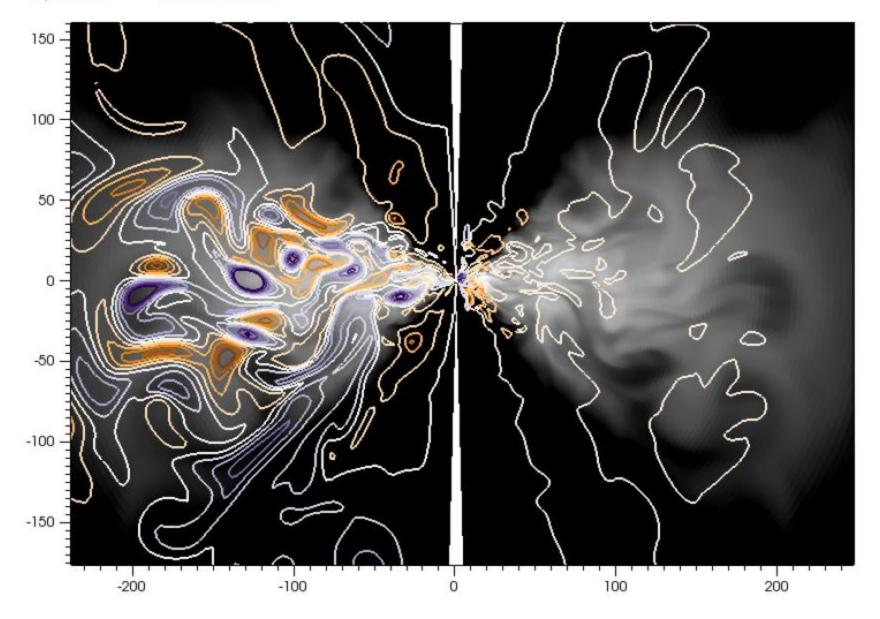
with u_{int} and $p = (\gamma_{int} - 1)u_{int}$ representing the internal energy density and pressure of the gas in the comoving frame with adiabatic index, $\gamma_{\rm int}$, and b^{μ} - the magnetic field 4-vector (Gammie et al. 2003). R_{ν}^{μ} stands for the radiative stress-energy tensor and n for the photon number density.

where $h_{\nu}^{\mu} = \delta_{\nu}^{\mu} + u^{\mu}u_{\nu}$ is the projection tensor, and u^{μ} is the gas fourvelocity. The new components of the dual electromagnetic field tensor, therefore, are

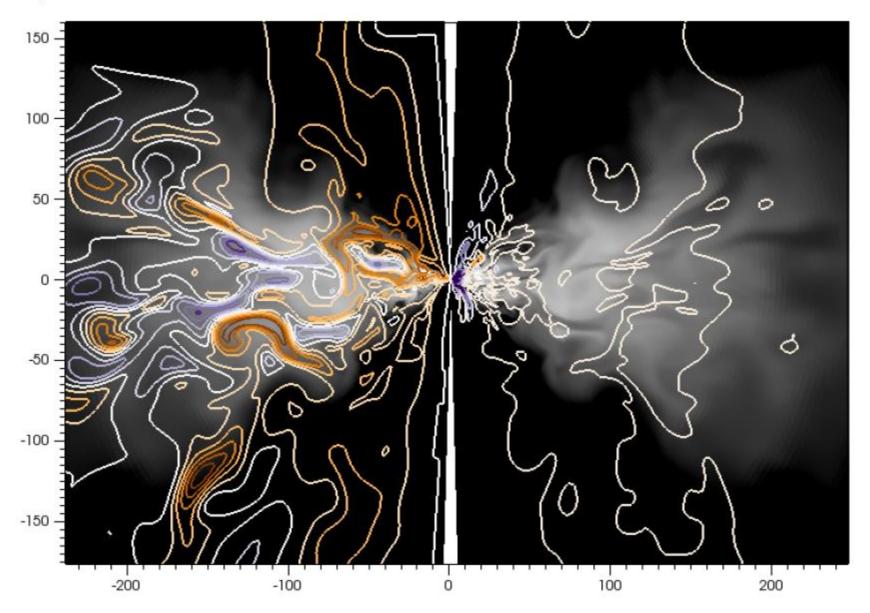
$$F_{\rm CB}^{*\mu\nu} = -\epsilon^{\mu\nu\alpha\beta} (E_{\rm CB})_{\alpha} u_{\beta} = -\epsilon^{\mu\nu\alpha\beta} h_{\alpha\gamma} G^{\gamma} u_{\beta} \frac{m_{\rm p}}{\rho e c} , \qquad (18)$$

which leads to the modified induction equation

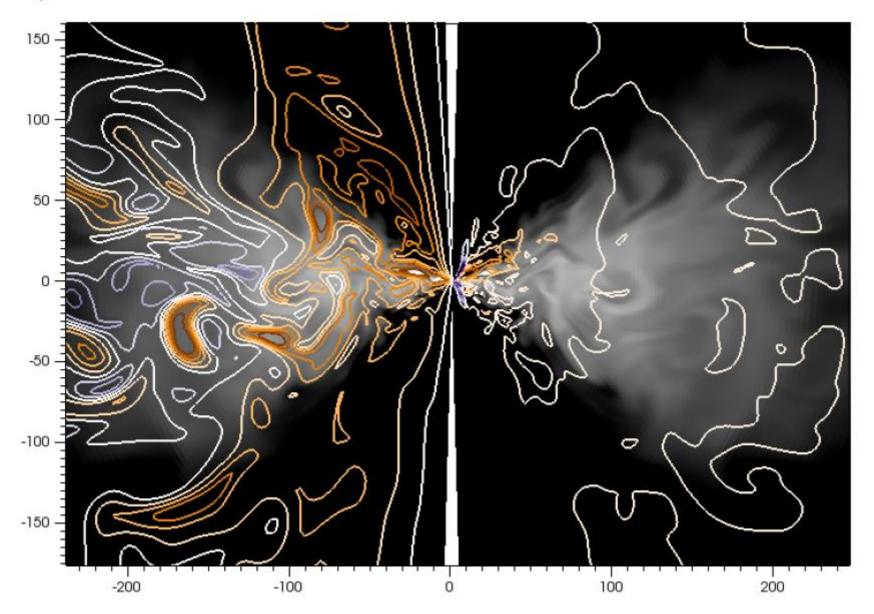
Compiled using MNRAS LATEX style file v3.0

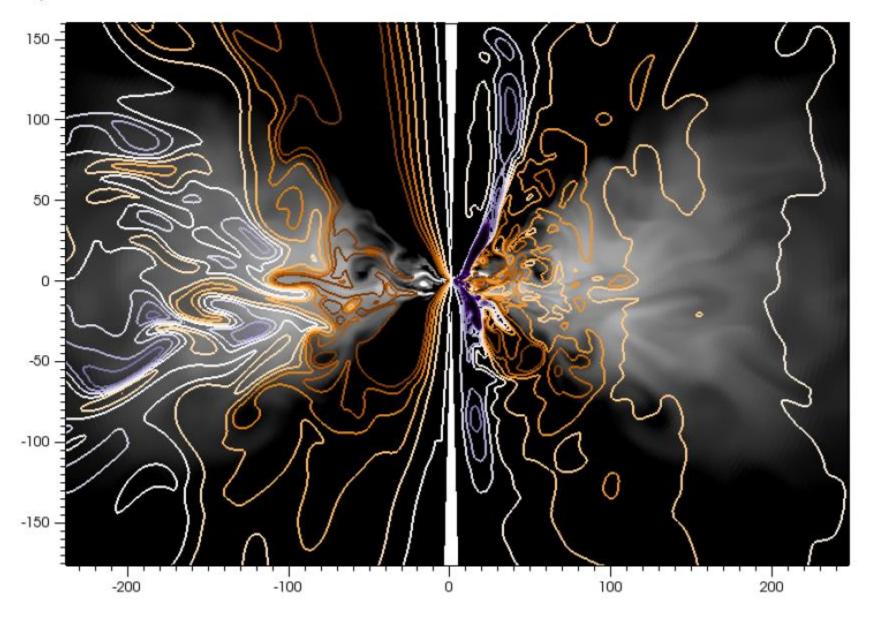

$$\partial_t (\sqrt{-g} B^i) = -\partial_j \left(\sqrt{-g} (b^j u^i - b^i u^j) + \sqrt{-g} \epsilon^{ij\alpha\beta} (E_{\text{CB}})_\alpha u_\beta \right)$$

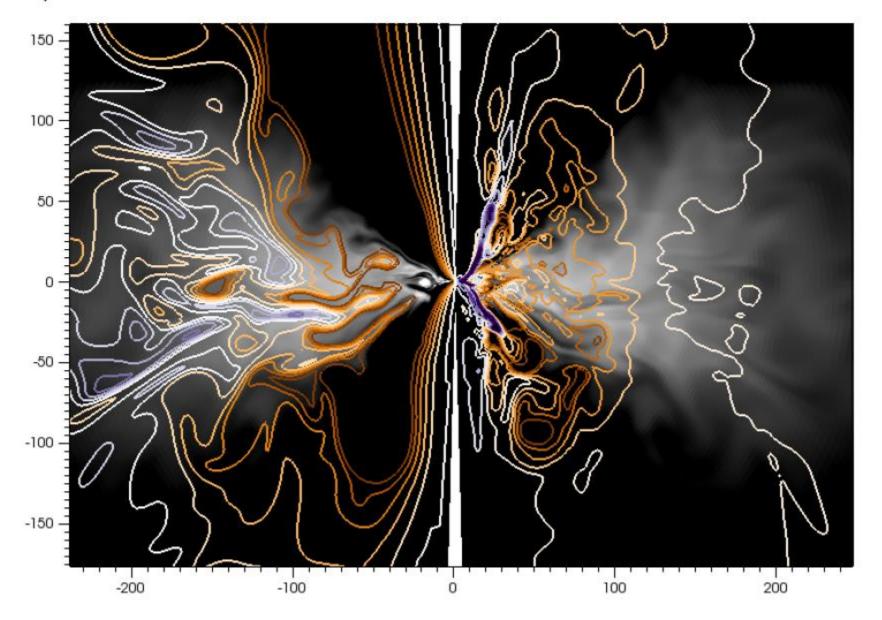
$$= -\partial_j \left(\sqrt{-g} (b^j u^i - b^i u^j + \epsilon^{ij\alpha\beta} h_{\alpha\gamma} G^{\gamma} u_{\beta} \frac{m_{\rm p}}{\rho e c}) \right). \tag{19}$$

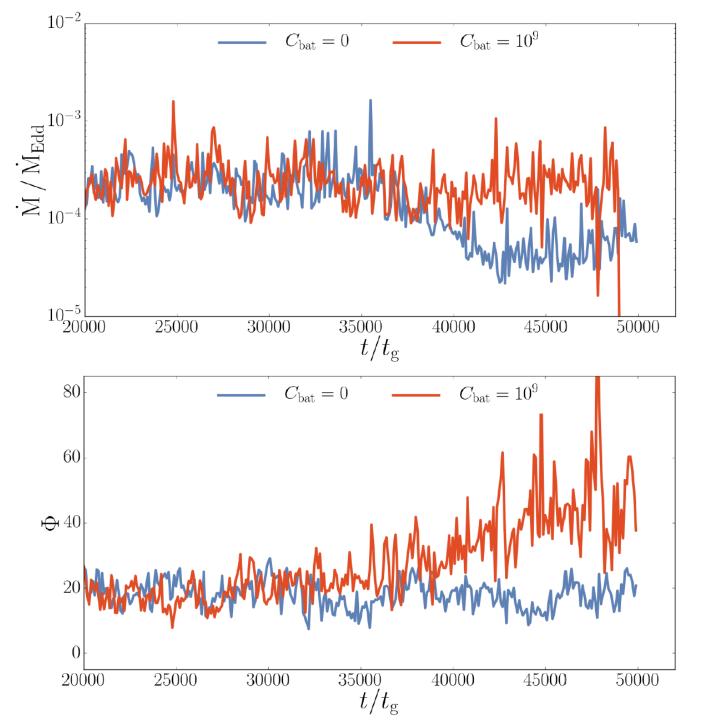

It is interesting that the CB term involves the radiation four-force density G^{μ} which is already calculated in the numerical code, and does not require the calculation of extra quantitities. Therefore, its inclusion has no extra computational cost for an MHD+radiation simulation.

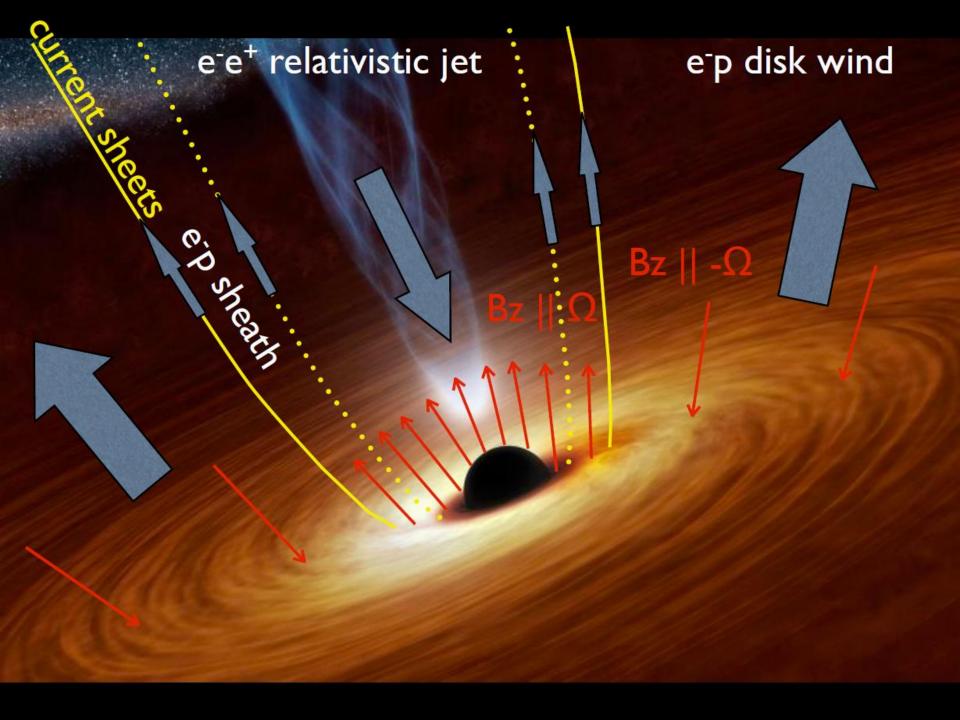
This is the first time that the extra CB term appears in the general relativistic form of the induction equation. Our goal in the

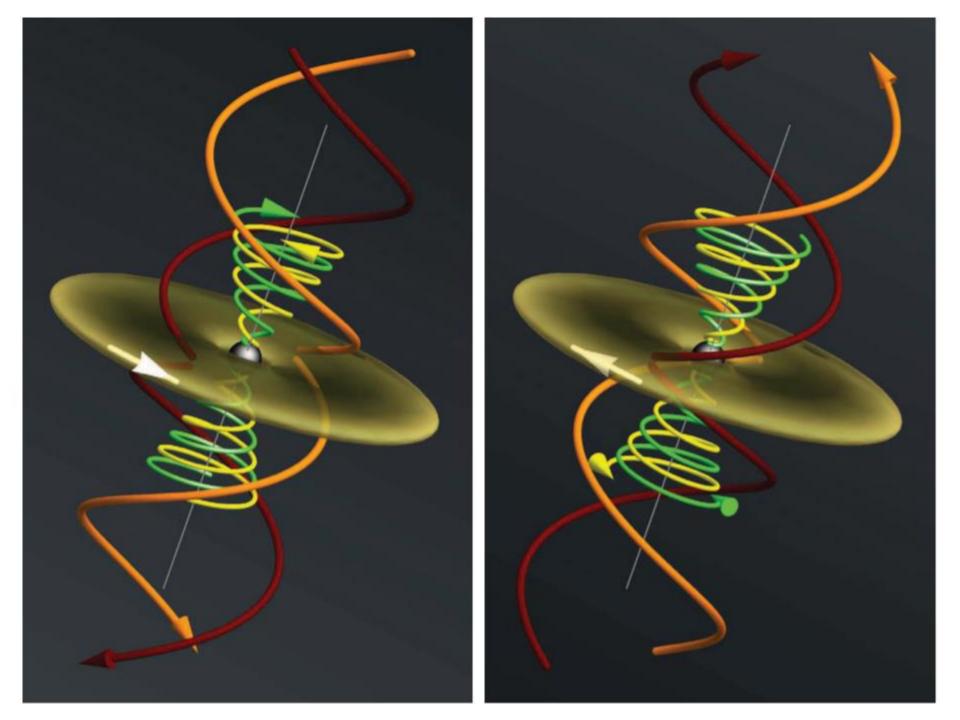

DB: sil2200.silo Cycle: 0 Time:22000


DB: sil3064.silo Cycle: 0 Time:30640

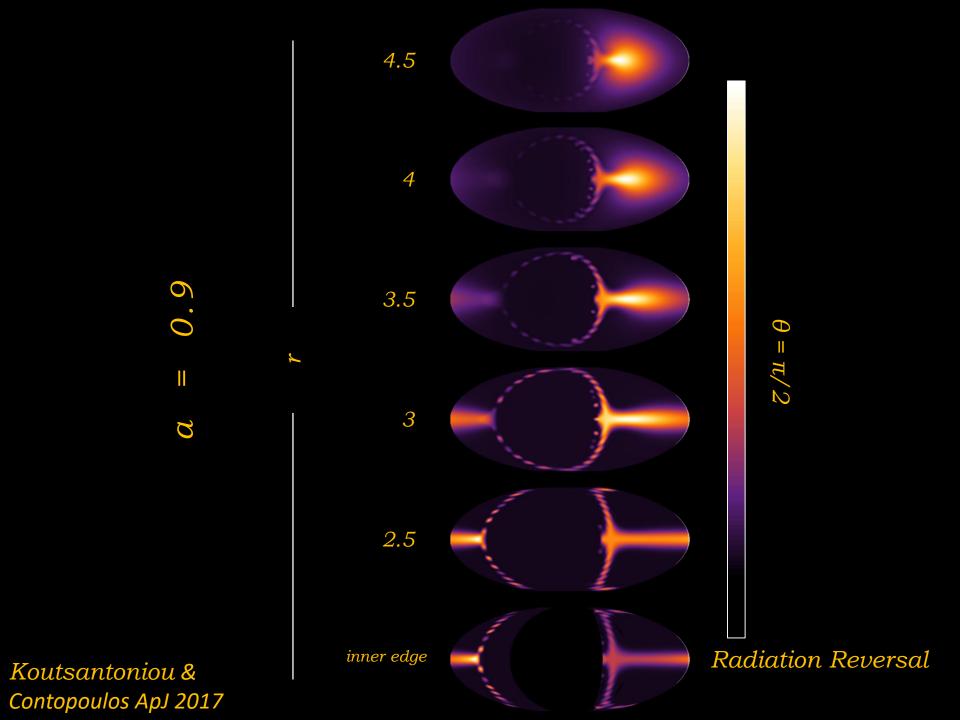

DB: sil3549.silo Cycle: 0 Time:35490




DB: sil4568.silo Cycle: 0 Tir Time:45680



DB: sil4800.silo Cycle: 0 Time:48000



Electric currents along astrophysical jets

They exist and they are observable!
Always flowing outward on kpc scales!
Inner or outer? Core or sheath?
How can we observe more of them?

