Polarised Emission from Astrophysical Jets, June 12-16, 2017 - Ierapetra, Crete 3mm GMVA observations of total and polarised emission from blazar and radio galaxy core regions **Carolina Casadio** Max-Planck-Institut für Radioastronomie Alan Marscher, Thomas Krichbaum, Svetlana Jorstad, José L. Gómez, Iván Agudo,

Jeffrey Hodgson, Michael Bremer, Helge Rottmann, Alessandra Bertarini, Uwe Bach, Pablo de Vicente, Jae-Young Kim, Anton Zensus, Bindu Rani, Juha Kallunki, Michael Lindqvist

GMVA observations

THE SAMPLE

Half of the 37 gamma-ray bright and radio loud AGN: 24 FSRQ and BL Lacs, 3 radiogalaxies (3C 120, 3C 111 and 3C 84)

43 GHz VLBA (VLBA-BU-BLAZAR program) polarimetric obs.

- VLBA
- started in 2008, monthly obs.
- maximum resolution ~ 0.15 mas
- 86 GHz GMVA polarimetric obs. (PI: Prof. Marscher)

- VLBA, Green Bank, Effelsberg, Onsala, Yebes,
 Metsahovi, Pico Veleta, Plateau de Bure, KVN stations
- started in 2008.78, ~ every 6 months
- max resolution ~ 0.05 mas

PhD thesis of J. Hodgson - 2015 (http://www3.mpifr-bonn.mpg.de/div/vlbi/globalmm/) 🍣

GAINS and LOSSES with 3mm GMVA observations

GAINS

- 3 TIMES MORE RESOLUTION !
- · observation of the regions optically thick at 43 GHz
- comparison of the linearly polarised and total intensity images
 between 86 and 43 GHz
 LOSSES
 Privileged sample to investigate the magnetic field in the very inner regions of AGN
- a lot of time in calibrating data
- data are noisy and many scans can be lost due to atmospheric fluctuations (atmospheric coherence time at 86 GHz ~ 10 - 20 sec), stations problems, etc..

REDUCED PARALLACTIC ANGLE COVERAGE

Calibration of Polarisation

1) correction for the instrumental polarisation

2) correction of the apparent orientation of EVPAs to the correct value

1) correction for the instrumental polarisation 21 May 2016 - GMVA obs.

1) correction for the instrumental polarisation 21 May 2016 - GMVA obs.

Average vs. Proper D-terms: the ideal case of 0J 287

Average vs. Proper D-terms: the ideal case of 0J 287

Average vs. Proper D-terms: the unlucky case of 1510-089

Average vs. Proper D-terms: the unlucky case of CTA 102

GMVA polarised and total intensity images

Relative Right Ascension (mas) Peak Total Intensity 0.6776 Jy/beam (first contour at 3.39 mJy/beam - Noise Pol. 25.0% peak) Total Intensity Contours 0.50,0.89,1.59,2.82,5.03,8.95,15.94,28.38,50.54,90% of peak Beam FWHM 0.15x0.04 mas at -16.65 deg.

Relative Right Ascension (mas) Peak Total Intensity 2.0308 Jy/beam (first contour at 4.06 mJy/beam - Noise Pol. 60.0% peak) Total Intensity Contours 0.20,0.39,0.78,1.53,3.02,5.96,11.74,23.15,45.65,90% of peak

Beam FWHM 0.16x0.05 mas at -14.07 deg.

Beam FWHM 0.25x0.08 mas at 0.96 deg.

86 GHZ GMVA / 43 GHZ VLBA - 1510-089

86 GHZ GMVA / 43 GHZ VLBA - 03 287

14

Conclusions

We present the most complete sample, so far, of polarised images at the highest possible resolution;

3mm GMVA observations are a powerful tool to investigate the central region of distant blazars and radiogalaxies: the reduced opacity at 3mm and improved angular resolution (~ 50 μ arcseconds) allow us to distinguish features not visible in VLBA 43 GHz observations (e.g., 1510–089 and 03287)

Calibration of instrumental polarisation

The D-terms of a source are well defined only in case of good coverage of the parallactic angle (PA) for all the antennas;

If the coverage of the PA is not good enough, the morphology of the polarised emission can vary and, in general, the polarised flux is lower;

Applying the D-terms obtoned roll here very e of all the sources is a more stable method that gives more reliable polarised maps and also permits us to investigate the stability of the D-terms at 86 GHz (GMVA) among epochs.