Synchrotron Emission from Protostellar Jets

Carlos Carrasco-González

Instituto de Radioastronomía y Astrofísica (IRyA) UNAM Campus Morelia (México)

Adriana Rodríguez-Kamenetzky

Instituto de Astronomía Teórica y Experimental (IATE) (Argentina)

Protostellar Jets

HST · WFPC2

HH34

HH47

NO INFORMATION ABOUT MAGNETIC FIELD IN THE JET

Dust Polarization

Traces magnetic field around the protostar (disk, envelope)

Girart et al. (2009)

Maser Polarization

Traces magnetic field in molecular gas

Sometimes outflow Sometimes envelope

Sanna et al. (2015)

Negative spectral indices -> Non-thermal emission

First (and still unique) detection of linearly polarized emission at cm wavelengths in a protostellar jet

"Massive" protostar (~10 Msun)

"Fast" Jet -> 1000 km/s

Jet very well embedded in dense material

Linear polarization at 6 cm after 12 hours of VLA observation

Confirmation of synchrotron emission in protostellar jets

- 1. Particle acceleration mechanism
- 2. Possibility of studying magnetic field

Carrasco-González et al. (2010)

Apparent magnetic field is parallel to the jet direction

Polarized dust emission → **envelope/disk**

Synchrotron emission \rightarrow jet

There is a gradient in the polarizarion degree across the jet width

Consistent with helical magnetic field

High <u>sensitivity</u> (~microJy/beam) High angular <u>resolution</u> (0.1-1"->10 - 100 AU) Allows simultaneous observations of <u>large bandwidths</u> (4 - 8 GHz)

We started a project to observe several non-thermal protostellar radiojets with the VLA

Two objectives:

Study magnetic field configuration (multi-wavelength polarization)

Study particle acceleration (resolved spectral indices maps)

Adriana Rodriguez-Kamenetzky PhD Thesis

Synchrotron protostellar jets candidates

... we DID NOT detect polarization in any of our sources

... we DID NOT detect polarization in any of our sources

Large depolarization because large Faraday Rotation?

We are using observations with <u>large bandwidths</u> (1 - 4 GHz)

... we DID NOT detect polarization in any of our sources

Large depolarization because large Faraday Rotation?

We are using observations with <u>large bandwidths</u> (1 - 4 GHz)

Polarization from <u>extended resolved component</u>?

Our new observations have <u>higher angular resolution</u> Polarization in HH 80-81 were detected in a <u>very extended structure</u>

... we DID NOT detect polarization in any of our sources

Large depolarization because large Faraday Rotation? We are using observations with large bandwidths (1 - 4 GHz)

Polarization from <u>extended resolved component</u>?

Our new observations have <u>higher angular resolution</u> Polarization in HH 80-81 were detected in a <u>very extended structure</u>

BUT, we could study particle acceleration in some jets

Intermediate-mass protostar (~5 Msun)

Also "fast" jet (>300 Km/s)

Periodic ejections + Jet precession

Intermediate-mass protostar (~5 Msun)

Non-thermal emission from shocks

Also "fast" jet (>300 Km/s)

Periodic ejections + Jet precession

Intermediate-mass protostar (~5 Msun)

Spectral Index -0.6 -0.4 -0.20.4 0.6 0.2 Declination (arcsec) Serpens ~300 km/s 10 S+C+X Bands thermal ($\alpha > 0$) 5 NW_C 0 Relative J2000 SE N -5 non-thermal $(\alpha < 0)$ SE_S -10~300 km/s 10 0 -5 5 -10Relative J2000 Right Ascension (arcsec)

Non-thermal emission from shocks

Also "fast" jet (>300 Km/s)

Periodic ejections + Jet precession

Intermediate-mass protostar (~5 Msun)

Adiabatic Shocks 1000 1000 1000 1000 1000 1000 1000 10⁻⁷ 10⁻⁶ dW/dt (Msun/yr) 10⁻⁵ Adiabatic shocks against the ambient medium

No special properties Only fast jet + Dense medium

Nice images showing different structures

Spectral index maps

Spectral index maps

Non-thermal emission from shocks against the ambient medium

Spectral index maps

Non-thermal emission from shocks against the ambient medium But also from the "collimated" part of the jet (internal shocks?) Rodriguez-Kamenetzky, Carrasco-Gonzalez et al. (submitted)

Changes in the spectral index along the jet

Changes in the jet width

Changes in the jet direction

SUMMARY

Protostellar jets can accelerate particles and emit synchrotron emission

Mainly, they accelerate particles in strong shocks against the ambient medium

Jet properties to accelerate particles: "high" jet velocities and high densities of the ambient medium (young embedded protostars)

In some cases, also **internal shocks** seems to be able to accelerate particles and emit synchrotron

Possibility of study the magnetic field through linear polarization

But emission is **very weak** in these guys: we need very **high sensitivity** and very **high angular resolution**