Polarization monitoring of the lens system JVAS B0218+357

Andy Biggs ALMA Regional Centre, European Southern Observatory Ian Browne Jodrell Bank Centre for Astrophysics

Polarised Emission from Astrophysical Jets, Ierapetra, June 12-16 2017

JVAS B0218+357

York et al. 2005

Biggs et al. 1999

Polarization properties

Biggs et al. 2003

H₀ via lens time delays

Comparison of modelled and measured time delays gives H_0

Refsdal & Surdej 1994

VLA monitoring 1996/97

Time delay = $10.5 \pm 0.4 d$ (95% confidence)

Cohen et al. (2000) found 10.1 ± 1.6 d from <u>simultaneous monitoring</u> (total flux density only)

Gamma-ray monitoring

Fermi γ -ray flux versus time (A and B unresolved)

Auto-correlation

Positional offset between radio- and γ -rayemitting regions? (Barnacka et al. 2015)

Or is the radio delay wrong?

Reanalysis of radio monitoring data

• The data

- VLA A configuration

*Cohen et al. did not observe at 5 GHz

- 106 epochs in total
- 3 Frequencies (15, 8.4 and 5 GHz^{*})
- Polarization leakage calibrator was 3C84
- PPA calibrators were 3C119 (Biggs) and 3C48 (Cohen)
- Calibration in AIPS ; *u*, *v* modelfitting in Difmap
- Data-reduction improvements
 - Ring models in Stokes I, Q and U
 - Essential for accurate polarization measurements at 8.4 GHz
 - Recognition of polarization systematic offsets
 - Absolute flux and PPA calibration

3C48 as a PPA calibrator

Automated maps measure PPA at peak of polarized flux

HA-based PPA offset

Comparison of 3C119 and 3C48 R-L phase corrections (CLCOR)

Systematic offset is equivalent to the error in parallactic angle ($\Delta \psi$) corresponding to a 10' latitude error

Maps of ring polarized emission

Total flux density (delay and flux ratio removed)

Polarized flux density (delay and flux ratio removed)

Percentage polarization (delay and depolarization removed)

EVPA (delay and Faraday rotation removed)

Ratio/difference curves

Depolarization

Faraday rotation

Circular polarization

Julian date - 2450365

Time-delay analysis

What does this mean for H_0 ?

Main uncertainty on H_0 is the centre of the lensing galaxy which is constrained by the Einstein ring

For $\tau = 11.5$ days, $H_0 \approx 67 \pm 5$ km s⁻¹ Mpc⁻¹ (2σ) H_0 increases if mass profile is steeper than isothermal

Summary

- We have reanalysed VLA monitoring data for B0218+357
- Total of \cong 100 epochs at 15 and 8.4 GHz over \cong 100 days
- EVPA offsets due to near-zenith observing can be corrected
- Polarized-flux variability is particularly high
- Time delay is consistent with γ -ray value (11.5 days)
- Current modelling suggests $H_0 \cong 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- Combined variability curves sampled at 2 epochs per day