Determination of the helicity of neutrinos Parity violation of the weak interaction

Rebekka Schmidt

IMPRS retreat

27.10.2011

- spin 1/2 particles
- colourless
- electrically neutral
- \Rightarrow only weak interaction via massive vector bosons (W^{\pm} , Z^{0})
- 3 neutrinos, associated with e, μ , τ
- lepton number of each family conserved
- neutrinos are left handed and antineutrinos right handed

• helicity:

- projection of particle's spin \vec{S} along direction of motion \vec{p}

$$ec{s} \cdot ec{p} \Rightarrow ec{S} \uparrow \downarrow ec{p}$$
 negative, left helicity
 $ec{S} \uparrow \uparrow ec{p}$ positive, right helicity

• for massive particles: sign of helicity depends on frame

• helicity:

• projection of particle's spin \vec{S} along direction of motion \vec{p}

$$ec{s} \cdot ec{p} \Rightarrow ec{S} \uparrow \downarrow ec{p}$$
 negative, left helicity
 $ec{S} \uparrow \uparrow ec{p}$ positive, right helicity

• for massive particles: sign of helicity depends on frame

- handedness:
 - Lorentz invariant analogue of helicity
 - two states: left handed (LH) and right handed (RH)
 - massless particles: either pure RH or LH, can appear in either states
 - massive particles: both LH+RH components
 - \Rightarrow helicity eigenstate is combination of handedness states
- for $E \to \infty$ can neglect mass \Rightarrow handedness \equiv helicity

Parity violation of the weak interaction

first hint that there are only LH neutrinos and RH antineutrinos

1956: T. D. Lee and C. N. Yang predict P violation

1957: Wu et al. observed maximum P violation

parity transformation:

- polar vectors change sign: $ec{p}
 ightarrow -ec{p}$
- axial vectors don't change sign: $\vec{s} \rightarrow \vec{s}$

experiment:

- nuclear spins are aligned through magnetic field, measurement of the electrons
- reverse magnetic field for other scenario

result:

beta emisssion is preferentially in the direction opposite to the nuclear spin \Rightarrow parity is violated

- 1957: experiment to determine the helicity of the neutrino (Goldhaber et al.)
- used electron capture of the nucleus ¹⁵²Eu: ¹⁵²^mEu+e⁻ \rightarrow ¹⁵²Sm^{*}+ $\nu_e \rightarrow$ ¹⁵²Sm+ $\gamma + \nu_e$ 0 ¹/₂ 1 - ¹/₂ 0 1 - ¹/₂ 0 - ¹/₂ -1 ¹/₂ 0 -1 ¹/₂ $\Rightarrow \vec{s}(\gamma) \uparrow \downarrow \vec{s}(\nu_e)$

- 1957: experiment to determine the helicity of the neutrino (Goldhaber et al.)
- used electron capture of the nucleus ¹⁵²Eu: ¹⁵²^mEu+e⁻ \rightarrow ¹⁵²Sm^{*}+ $\nu_e \rightarrow$ ¹⁵²Sm+ $\gamma + \nu_e$ 0 ¹/₂ 1 - ¹/₂ 0 1 - ¹/₂ 0 - ¹/₂ -1 ¹/₂ 0 -1 ¹/₂ $\Rightarrow \vec{s}(\gamma) \uparrow \downarrow \vec{s}(\nu_e)$
- if neutrino and photon are "back-to-back"

$$Eu + e^-
ightarrow Sm^* +
u_e
ightarrow Sm + \gamma +
u_e$$

- energy of Sm^* is distributed on Sm and γ
 - $\rightarrow \gamma$ has to less energy to excite another Sm nucleus
- but: Sm^* gets a recoil when the ν_e is emitted \rightarrow doesn't decay in rest
- γ emitted in moving direction of Sm^* nucleus
 - \rightarrow gets additional energy
 - \rightarrow can be absorbed by another Sm nucleus
 - \Rightarrow resonant absorption possible

measurement of helicity:

- Eu-source in iron magnet
- photons Compton scattered on electrons of Fe
- $d\sigma/d\Omega(\uparrow\downarrow) > d\sigma/d\Omega(\uparrow\uparrow)$
- reverse magnetic field and count detected photons
 - \Rightarrow polarisation of photons

$$\Rightarrow$$
 $H(\nu) = -1.0 \pm 0.3$

 \Rightarrow neutrinos are left handed

- parity violation of weak interaction:
 - 1956 predicted by T. D. Lee and C. N. Yang
 - 1957 showed by Wu et al.
- Goldhaber-Experiment
 - · experiment to determine the helicity of neutrinos
 - ${\scriptstyle \bullet}\,$ showed that neutrinos are LH and antineutrinos RH
- no evidence for RH neutrinos, LH antineutrinos