Physics beyond the standard model Part II: Dark Matter

Ioannis Nestoras, **Lisa Zimmermann**, Sibylle Anderl IMPRS Retreat 2011, Hamburg

Outline

- 1. Evidence for Dark Matter
- 2. Dark Matter Candidates
 - 2.1 What Dark Matter is not
 - 2.2 WIMPs

1. Evidence for Dark Matter

"Missing mass" in galaxy clusters (Zwicky 1933)

Large scale structure

1. Evidence for Dark Matter

Power spectrum CMB

Big Bang Nucleosynthesis

2.1 What Dark Matter is not

- MACHOs: Massive Compact Halo Objects
 - Jupiters
 - Brown dwarfs
 - (Primordial) Black holes
 - Microlensing:

not enough objects found

Copyright @ Addison Wesley.

2.1 What Dark Matter is not

- Neutrinos
 - Finite mass
 - But:
 - upper mass limit
 - from Pauli exclusion principle: too massive
 - light and fast: erases small scale structure

What does a good candidate need then?

- Non-relativistic, slow moving at T~1 eV
- Massive particle
- Electrically neutral

Cold Dark Matter: WIMP

Paradigm: WIMP (Weakly interacting massive particle)

- stable heavy elementary particle χ with mχ> 10² GeV
- Created in BB until T<mx
- Only destroyed by annihilation
- Expansion until "freeze-out"
 - →"thermal relics"

Supersymmetry:

- Proton longevity: τp> ~10^33 yr
- But: without R-parity, Supersymmetry allows for τp~10^-12s
- R-parity assigns:
 - even parity to all particles in SM
 - odd parity to superpartners
 - Example: light particles: 2,4,6

heavy particles: 11,13,15

Decay of 15:

13+2, 15: 11+4, 15: 11+2+2

an odd particle remains (here 11)

Supersymmetry:

lightest supersymmetric particle (LSP) with odd parity cannot decay by definition

Candidate for Dark Matter

LSP in Supersymmetry:

neutralino:

Photino, Zino, Higgsino (supersymmetric partner of: photon, Z-boson, Higgs-boson) (10-10000 GeV)

gravitino

sneutrino

Extra dimensions:

- more spatial dimensions: a fourth one may be curled up very small
- as if each point in our familiar space were actually a tiny ring which a
 particle could run around
- particles moving around such rings would look like more massive versions of the Standard Model particles
- the lightest of these (the lightest Kaluza-Klein particle or LKP) is often stable as well

- Accelerator experiments
- Detection:
 - Direct
 - Indirect

Thank you for your attention

Next part: String Theory

