The IceCube Neutrino Observatory

IMPRS Retreat 2011, Hamburg

Lars Flöer

Neutrinos produce secondary particles by scattering with a nucleus

Particles emit Cherenkov radiation if they exceed the speed of light in the ambient medium

Neutrinos are detected by observation of Cherenkov radiation from secondary leptons

Francis Halzen, "IceCube neutrino observatory," in AccessScience, ©McGraw-Hill Companies, 2011, http://www.accessscience.com

Antarctic ice at >1450m depth is the ideal detector medium

IceCube is located at the south pole

IceCube is located at the south pole

Assembly during the austral summer months with hot-water drills

Digital-Optical-Modules send events to the surface

http://icecube.wisc.edu/gallery

Digital-Optical-Modules send events to the surface

Muon neutrinos produce tracks

Electron neutrinos produce cascades

Tau neutrinos produce a cascade followed by a secondary cascade from tau lepton decay

IceCube Science: High-energy neutrino point sources

4: 3C273 pp-Neutrinos

5: Crab Nebula

6: Coma Cluster

7: 3C273 py-Neutrinos

8: Supernovae

IC40 SIGNIFICANCE MAP

▶ Log-likelihood is calculated on a fine grid: 0.1° × 0.1°

Significance comes from the hottest single spot, calculated as the fraction of scrambled trials with equal or higher significance – robust result

IceCube Science: Search for WIMP decay

IceTop Science: Anisotropy of cosmic rays

