

• Part I (Nicolas): Experiments for direct detection of WIMPs

Part II (Jana):Cosmic RaysObservations

- •Part III (Cherry):
- •Astroparticle physics and pulsars

Weakly Interacting Massive Particles (WIMPs)

- Interaction through weak force
- Mass: $1 \text{ Kev} \le M \le 300 \text{ TeV} \ (\sim 100 \text{ GeV})$ ($M_{H_2} = 1 \text{ GeV}, M_U \sim 240 \text{ GeV})$
- Velocity (Galactic WIMPs): ~300 km s⁻¹

Weakly Interacting Massive Particles (WIMPs)

•Principle: WIMP/detector particle elastic collision

Energy transfer to medium

- •Important: cross-sections, expected event rates
- •Tests with neutron collisions

• Direct Detection: WIMP interaction with fermions in detector

- Cross-section (elastic scattering with fermions, today) $10^{-38} \, \mathrm{cm}^2$
- Event Rate $\sim 0.1 \text{ kg}^{-1} \text{ day}^{-1}$
- $\bullet \Rightarrow \text{Needs}$:

Large detector mass, Extremely low rate of background noise (low T)

The CDMS experiments:

Detector: Cryogenic Ge/Si crystals

Cryogen: ³He/⁴He Dilution Refrigerator (5-10 mK)

Physical Quantity Measured : Energy deposited in crystal by interaction

Means of Measurement: Change in conductivity of

Matter Search 1S)

eriments:

tals

Cryogen: ³He/⁴He Dilution Refrigerator (5-10 mK)

Physical Quantity Measured : Energy deposited in crystal by interaction

Means of Measurement: Change in conductivity of

Cryogen: ³He/⁴He Dilution Refrigerator (5-10 mK)

Physical Quantity Measured : Energy deposited in crystal by interaction

Means of Measurement: Change in conductivity of

(1) WIMP collides with detector nucleus

- (1) WIMP collides with detector nucleus
- (2) Vibration: Phonons propagation through crystal
- (3) Some phonos reach the detector surface

- (1) WIMP collides with detector nucleus
- (2) Vibration: Phonons propagation through crystal
- (3) Some phonos reach the detector surface
- (4) Phonos absorbed by Al collector fins

- (1) WIMP collides with detector nucleus
- (2) Vibration: Phonons propagation through crystal
- (3) Some phonos reach the detector surface
- (4) Phonos absorbed by Al collector fins
- (5) Phonon energy → to quasi-particles=e⁻ in super-conducting Cooper pair/ pair breaks

- (1) WIMP collides with detector nucleus
- (2) Vibration: Phonons propagation through crystal
- (3) Some phonos reach the detector surface
- (4) Phonos absorbed by Al collector fins
- (5) Phonon energy → to quasi-particles=e⁻ in super-conducting Cooper pair/ pair breaks
- (6) e migrate to W strip

- (1) WIMP collides with detector nucleus
- (2) Vibration: Phonons propagation through crystal
- (3) Some phonos reach the detector surface
- (4) Phonos absorbed by Al collector fins
- (5) Phonon energy → to quasi-particles=e⁻ in super-conducting Cooper pair/ pair breaks
- (6) e migrate to W strip

- (1) WIMP collides with detector nucleus
- (2) Vibration: Phonons propagation through crystal
- (3) Some phonos reach the detector surface
- (4) Phonos absorbed by Al collector fins
- (5) Phonon energy → to quasi-particles=e⁻ in super-conducting Cooper pair/ pair breaks
- (6) e⁻ migrate to W strip
- (7) Excess current pushes W from superconductor state back to conductor ⇒ dramatic change in the W electrical resistance

• Direct Detection: WIMP interaction with low pressure gas molecules in detector (e.g. CF₄ /CS₂ mixture)

Needs:

Large detector mass,

Extremely low rate of background noise (low T)

(1) WIMP collides with target gas nucleus → nucleus recoil

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/molecule ionises gas (CF₄)

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/molecule ionises gas (CF₄)
- $(3) \Rightarrow$ Path of free e⁻ in the gas

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/molecule ionises gas (CF₄)
- $(3) \Rightarrow Path of free e^- in the gas$
- (4) Free e⁻ are attached by electronegative CS_2 molecules $\Rightarrow CS_2$ ions track

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/molecule ionises gas (CF₄)
- $(3) \Rightarrow Path of free e^- in the gas$
- (4) Free e⁻ are attached by electronegative CS_2 molecules $\Rightarrow CS_2$ ions track
- (5) Applied E field makes CS₂⁻ ions drift to the readout plane

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/molecule ionises gas (CF₄)
- $(3) \Rightarrow$ Path of free e in the gas
- (4) Free e⁻ are attached by electronegative CS_2 molecules $\Rightarrow CS_2$ ions track
- (5) Applied E field makes CS₂⁻ ions drift to the readout plane
- (6) Large mass of ion (vs e⁻ mass) ⇒ the original track structure maintained

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/molecule ionises gas (CF₄)
- $(3) \Rightarrow$ Path of free e in the gas
- (4) Free e⁻ are attached by electronegative CS_2 molecules $\Rightarrow CS_2$ ions track
- (5) Applied E field makes CS₂⁻ ions drift to the readout plane
- (6) Large mass of ion (vs e⁻ mass) ⇒ the original track structure maintained
- (7) High directional sensitivity

Dark matter detection through scintillation:

Detector: cryogenic noble liquid (Ar, Xe)
Allows ionisation & scintillation detection

Cryogen: external liquid Argon bath (~87 K)

Physical Quantity Measured: energy diposited in medium by recoil

Means of Measurement: Scintillation light

(1) WIMP collides with target gas nucleus → nucleus recoil

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/ excitation-ionisation of atoms

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/ excitation-ionisation of atoms
- (3) De-excitations ,re-combinations ⇒ primary scintillation signal

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/ excitation-ionisation of atoms
- (3) De-excitations ,re-combinations ⇒ primary scintillation signal
- (4) Applied E field⇒ free e go to gas

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/ excitation-ionisation of atoms
- (3) De-excitations ,re-combinations ⇒ primary scintillation signal
- (4) Applied E field⇒ free e go to gas
- (5) e⁻ accelerated, collide with gas atoms ⇒ secondary scintillation signal

- (1) WIMP collides with target gas nucleus → nucleus recoil
- (2) Recoil nucleus/ excitation-ionisation of atoms
- (3) De-excitations ,re-combinations ⇒ primary scintillation signal
- (4) Applied E field⇒ free e go to gas
- (5) e⁻ accelerated, collide with gas atoms ⇒ secondary scintillation signal
- (6) primary/secondary are dependent on the nature of the kind of impinging particle.

Results so far

Also, Axions are searched...

