The standard model

PART 3 by Sandra Burkutean

Quarks

Quark masses and uds flavour symmetry

$$m(\cite{m(\c$$

The flavour symmetry implies that there exists a unitary matrix such that:

$$\begin{pmatrix} u' \\ d' \\ s' \end{pmatrix} = \hat{U} \begin{pmatrix} u \\ d \\ s \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$
$$\vec{T} = \frac{1}{2} \vec{\lambda} \qquad \hat{U} = e^{i\vec{\alpha} \cdot \vec{T}}$$

Pseudoscalar mesons

$$L = 0$$

 $S = 0$
 $J = 0$
 $P=-1$

Vector mesons

$$L = 0$$

 $S = 1$
 $J = 1$
 $P = -1$

Figures taken from Prof. M.A. Thomsons's, Michaelmas 2010 lecture r

Baryon decouplet

$$L = 0$$

 $S = 3/2$
 $J = 3/2$
 $P = +1$

Baryon Octet

$$L = 0$$

 $S = 1/2$
 $J = 1/2$
 $P = +1$

Quantum Chromodynamics (QCD)

Invariance under SU(3) local phase transformation

suppose we know the Gell-Mann matrices, then we can construct a transformation of the form:

Due to the SU(3) symmetry, the strong interaction is the same for all three colours

ONLY COLOUR SINGLET STATES EXIST(colour confinement) colour quantum invariant under SU(3) ladder operators numbers yield zeros transformations yield zero $\frac{1}{\sqrt{3}}(r\overline{r}+g\overline{g}+b\overline{b})$ $q\overline{q}$ $\frac{1}{\sqrt{2}}(rg-gr)$ qq **BARYONS** \oplus 999

Figures taken from Prof. M.A. Thomsons's, Michaelmas 2010 lecture notes

Gluons

Since gluons carry colour charge, there are 9 states they could potentially exist in:

octet + 1 colourless singlet

this would behave like a photon ---- not observed the strong force is short range !!!! SU(3) symmetry

Gluon-gluon interactions

quartic-gluon vertex

flux tubes

Figures taken from Prof. M.A. Thomsons's, Michaelmas 2010 lecture notes

Hadronisation

Figures taken from Peter Richardson, IPPP Durham lecture co

Electroweak Unification

Why do we need this?

Figures taken from Prof. M.A. Thomsons's, Michaelmas 2010 lecture r

*SU(2) * U(1)*

place fermions in isospin doublets

lecture notes

IT MAY NOT ALWAYS SEEV LIKE IT, BUT PHYSICS IS ALI ABOUT SIMPLICITY! Figures taken from Prof. M.A. Thomsons's, Michaelmas 2010

 $\psi \exp(i \alpha(x). \sigma/2)$

3 gauge bosons

3 Pauli spin matrices

2 charged current neutral current interaction interactions

r combination of 1 and W2 gives

There are two spin 1 utral gauge bosons availab

linear combination in terms of a weak mixing angle &

This is a new U(1) gauge symmetry, consv. of hypercharge

The previous steps only work for massless gauge bosons (like the photon)!!!

propose a scalar field

with non-zero vacuum expectation value

Higgs field

80.4 **GeV**

91.2 **GeV**

photon

Idea and pictures taken from Rheinhard Schwienhorst, University of Virginia Physics Colloquium, 11/2/2007

field

Problems with the standard model

- 1. Too many free parameters
- 2. Why does nature choose these particular symmetries?
 - 3. Where does the matter/anti-matter discrepancy come from ?
 - 4. How can we incorporate gravity?