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RELATIVISTIC PLASMA EMISSION AND PULSAR RADIO EMISSION: A CRITIQUE
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ABSTRACT
Relativistic plasma emission due to a beam instability in the polar cap regions is examined critically as

a pulsar radio emission mechanism. Wave dispersion in the pulsar plasma is discussed, based on the use
of a relativistic plasma dispersion function. The growth rate for the beam instability is estimated in the
rest frame of the plasma for parallel Langmuir waves, L-O mode waves, and oblique waves. TheAlfve� n
Ðrst two of these imply frequencies that are much higher than the observed frequencies for plausible
parameters, suggesting that they are not viable as pulsar radio emission mechanisms. Growth of Alfve� n
waves requires that the beam speed equal the phase speed of the waves, and this condition cannotAlfve� n
be satisÐed within the light cylinder, except for an extremely high energy beam. It is suggested that either
the plasma parameters in the source region are quite di†erent from what is currently considered plaus-
ible or the emission mechanism does not involve a beam instability. Alternative pulsar radio emission
mechanisms should be explored further.
Subject headings : plasmas È pulsars : general È radio continuum: stars È relativity

1. INTRODUCTION

In polar-cap models for pulsars (e.g., Ruderman &
Sutherland 1975 ; Arons 1983) the source region for the
radio emission is assumed to be populated by a pulsar
plasma, which is deÐned as an intrinsically extremely rela-
tivistic, streaming, one-dimensional, strongly magnetized,
electron-positron pair plasma. However, the radio emission
mechanism is still not adequately understood. Perhaps the
most widely favored mechanism involves a beam instability
in which the free energy associated with some relative
streaming motion between di†erent particle distributions in
the outÑowing pair plasma is transferred to waves in the
plasma, with these waves producing the escaping radiation
either directly or indirectly. Here this mechanism is referred
to as relativistic plasma emission (RPE), based on the
analogy with plasma emission in solar radio bursts, in
which a beam of nonrelativistic electrons generates Lang-
muir waves, which produce transverse waves at the funda-
mental or second harmonic of the plasma frequency, u

p
.

RPE was Ðrst discussed by Ginzburg, Zheleznyakov, &
Zaitsev (1969), who noted the analogy with solar radio
emission, and there is now extensive literature on various
forms of RPE (e.g., Tsytovich & Kaplan 1972 ; Kaplan &
Tsytovich 1973 ; Suvorov & Chugunov 1973, 1975 ; Hinata
1976a, 1976b ; Hardee & Rose 1976, 1978 ; Benford & Bus-
chauer 1977 ; Lominadze, Mikhailovskii, & Sagdeev 1979 ;

Pellat, & Sol 1983 ; Egorenkov, Lominadze, & Mam-Asse� o,
ramdze 1983 ; Lyubarskii 1992, 1993 ; 1993, 1995 ;Asse� o
Weatherall 1994 ; & Melikidze 1998). In other earlyAsse� o
literature on pulsar radio emission, curvature emission by
bunches was favored as the emission mechanism (e.g.,
Ruderman & Sutherland 1975), but this is no longer con-
sidered viable (Melrose 1981). Besides versions of RPE,
several di†erent pulsar radio emission mechanisms remain
under consideration, including maser curvature emission
(e.g., Zheleznyakov & Shaposhnikov 1979 ; Shaposhnikov
1981 ; Larroche & Pellat 1987 ; Chugunov & Shaposhnikov

1 Research Centre for Theoretical Astrophysics, School of Physics, Uni-
versity of Sydney, Australia.

2 Department of Physics, Ben Gurion University of the Negev, Israel.

1988 ; Luo & Melrose 1992, 1995), variants of free electron
maser emission such as linear acceleration emission or
Raman scattering (e.g., Melrose 1978 ; Kroll & McMullin
1979 ; Rowe 1992, 1995), an instability associated with cur-
vature drift motions (e.g., Kazbegi, Machabeli, & Melikidze
1987 ; Luo, Melrose, & Machabeli 1994), and an anomalous
Doppler instability (e.g., Lominadze, Machabeli, & Usov
1983 ; Machabeli & Usov 1989 ; Kazbegi et al. 1991).

In the present paper the application of RPE to pulsars is
discussed critically. This investigation was motivated in
part by the suggestion by Kunzl et al. (1998) that the fre-
quency of Langmuir waves in a pulsar magnetosphere is too
high for RPE to be compatible with the observed fre-
quencies of pulsar radio emission. Kunzl et al. (1998) used
an oversimpliÐed model for the dispersion of these waves
(Allen & Melrose 1982), and their argument needs to be
reconsidered based on a more realistic and a more detailed
treatment of the wave properties and of the processes by
which these waves produce escaping radiation. A suggested
alternative form of RPE is the growth of wavesAlfve� n
rather than Langmuir waves (Tsytovich & Kaplan 1972).

waves can grow only if the resonance condition, thatAlfve� n
the beam speed equal the phase speed of the waves, is satis-
Ðed, and this proves very restrictive, as shown below, being
satisÐed only under exceptional circumstances. These diffi-
culties lead to serious doubts as to whether RPE is viable as
a pulsar radio emission mechanism.

An essential ingredient in a detailed discussion of RPE is
a treatment of the properties of the waves in the source
region of the radio emission, which is assumed to be the
polar-cap regions. The pulsar plasma in these regions is
thought to be generated in a multistage process (e.g., Stur-
rock 1971 ; Ruderman & Sutherland 1975 ; Arons 1983) : a
vacuum electric Ðeld accelerates primary particles to very
high energies, these emit gamma rays nearly along B, and
the gamma rays subsequently decay into secondary pairs in
a pair production front (PPF). The number density of the
primary particles is of order the Goldreich-Julian value, nGJ,and the number density of the secondary particles is greater
than this by a multiplicity factor, M, which is thought to be
large but is poorly determined (e.g., Shibata, Miyazaki, &
Takahara 1998). The secondary particles are extremely rela-
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tivistic, with energy of order 1/M times that of the primary
particles in simple models. The secondary particles rapidly
radiate away any perpendicular (to B) energy due to gyro-
magnetic emission, so that the particle motions are one-
dimensional along B. The secondary plasma is expected to
be intrinsically extremely relativistic in the sense that the
mean energy spread is a substantial fraction of the bulk
streaming energy, so that the particle distributions remain
extremely relativistic even when described in the rest frame
of the plasma.

There is now extensive literature on the wave properties
in a pulsar plasma (e.g., Tsytovich & Kaplan 1972 ; Suvorov
& Chugunov 1973, 1975 ; Godfrey, Shanahan, & Thode
1975 ; Melrose & Stoneham 1977 ; Gedalin & Machabeli
1983 ; Volokitin, Krasnoselskikh, & Machabeli 1985 ; Arons
& Barnard 1986 ; Beskin, Gurevich, & Istomin 1988 ; Lyuti-
kov 1998). It is known that there are three natural wave
modes, which are given a confusing variety of names,
usually based on an analogy with a nonrelativistic plasma.
The names used here are as follows : The magnetoacoustic
(or X or t) mode is the strictly transverse with an electric
vector orthogonal to both B and to the wave vector, k. The
other two modes are neither strictly transverse nor strictly
longitudinal, except in special cases. One important special
case is for parallel (to B) propagation when they are the
parallel Langmuir mode, which is longitudinal, and the
parallel mode, which is transverse. For obliqueAlfve� n-O
propagation these two modes reconnect into the Alfve� n
mode and the L-O mode.

Many of the important features of wave dispersion in a
pulsar plasma can be treated in terms of appropriate
moments of the particle distribution (e.g., Lominadze &
Mikhailovskii 1979 ; Lominadze et al. 1979 ; Volokitin et al.
1985). However, a more thorough treatment requires the
introduction of a relativistic plasma dispersion function
(RPDF), which depends explicitly on the form of the dis-
tribution function. This approach was followed by Arons &
Barnard (1986), who chose a ““ water bag ÏÏ distribution.
However, this distribution function is discontinuous, and to
describe the wave properties adequately it is necessary to
choose a distribution function with continuous Ðrst and
second derivatives (Gedalin, Melrose, & Gruman 1998,
hereafter GMG). Melrose et al. (1999, hereafter MGKF)
investigated several di†erent distribution functions and
found that the wave dispersion is not particularly sensitive
to the choice in the extremely relativistic limit. The distribu-
tion function chosen here for most illustrative purposes is a

(relativistic thermal) distribution.Ju� ttner
Several forms of beam instability have been suggested for

RPE. Two forms considered in the earlier literature are the
primary particles Ñowing through the secondary particles
(e.g., Hardee & Rose 1976) and the relative motions of elec-
trons to positrons associated with a required net current
(Cheng & Ruderman 1977), but it was argued that neither of
these can lead to adequate growth (e.g., Benford & Bus-
chauer 1977 ; Pellat, & Rosado 1980). A widelyAsse� o,
favored suggestion is to appeal to the production of the
secondary pairs being nonuniform in space and time,
resulting in bursts of plasma production ; then localized
bursts of escaping plasma can lead to an instability when
the faster particles in a trailing bunch overtake the slower
particles in a preceding bunch (Usov 1987 ; Ursov & Usov
1988 ; & Melikidze 1998). Recent investigationsAsse� o
suggest that a steady state model for the PPF is unrealistic

(e.g., Shibata et al. 1998 ; Harding & Muslimov 1998), and it
seems plausible that the generation of the secondary pairs is
highly structured in space and time, as required by this
suggestion for a beam instability to be e†ective. Another
suggestion is that a return Ñux of particles of one sign is
needed to satisfy continuity of the current (Lyubarskii
1992), resulting in counterstreaming motions.

In ° 2 the assumptions concerning the plasma properties
are summarized, and the properties of low-frequency waves,
concentrating on the subluminal region of relevance to
RPE, are described. In ° 3 the growth rates for the various
waves due to a beam instability are estimated, and the
escape of the radiation is discussed. All the detailed analysis
is carried out in the plasma rest frame, and in ° 4 the results
are transformed to the pulsar frame, which is not distin-
guished from the laboratory frame. In ° 5 the implications of
the various restrictions on RPE are compared with obser-
vational constraints, and the results are discussed in ° 6.
Units with c\ 1 are used throughout.

2. WAVE DISPERSION IN THE PLASMA REST FRAME

In this section the properties of low-frequency waves in a
pulsar plasma are described choosing the rest frame of the
plasma.

2.1. T he Model for the Plasma
In describing the plasma in the pulsar magnetosphere the

following assumptions are made : For the strong Ðeld limit,
an expansion is made in inverse powers of the magneto-
spheric magnetic Ðeld, B, with terms up to second order
retained. For the one-dimensional distribution, the particles
are assumed to be all in their lowest Landau orbital, corre-
sponding classically to zero gyroradius. For the extremely
relativistic limit, the particles are assumed to be intrinsically
extremely relativistic, in the sense that in the rest frame of
the plasma, the spread in particle energies is much greater
than their rest energy. For weak inhomogeneity, gradients in
the plasma parameters and curvature of the Ðeld lines are
ignored, and plane wave solutions are sought. For the low-
frequency, long-wavelength limit, the waves are assumed to
be of low frequency and long wavelength, in the sense that
their frequency, u, and wavenumber, k, are much less than
the cyclotron frequency of the particles. For weak gyro-
tropy, an expansion is made in inverse powers of the multi-
plicity factor M for the secondary pairs, and the gyrotropic
terms, which are Ðrst order in 1/M, are ignored.

2.2. T he Plasma Rest Frame
It is convenient to treat the waves dispersion in the rest

frame of the plasma. In this frame, let the distribution func-
tion of the particles be f (u), where u \ p/m is the 4-speed of
the particles. Averages over any function K(u) of u are
described by angular brackets :

SKT \
P
~=

=
du K(u) f (u),

P
~=

=
du f (u) \ 1 . (1)

The assumption that the plasma is intrinsically relativistic
corresponds to ScT ? 1, with c\ (1] u2)1@2. The speed of
the particle is v\ u/c.

Let the electrons and positrons have number densities
The total number density and the meann

B
. n \ n

`
] n~
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Lorentz factor ScT are incorporated into the deÐnitions,

u
p
\
A e2n
v0m

B1@2
, vA \ ScT~1@2 )

e
u

p
, (2)

of the plasma frequency and the speed, respectively,Alfve� n
with Another parameter that appears below is)

e
\ eB/m.

the mean square speed, deÐned by writingv8 2,
Scv2T \ ScTv8 2 . (3)

In an extremely relativistic plasma one has v8 2B 1.
By deÐnition, in the plasma rest frame one has n

`
v
`where are the bulk velocities of the elec-] n~ v~\ 0, v

Btrons and positrons. In a corotating pulsar magnetosphere
one has because the charge densityn

`
D n~,

and the current density J \[e(n
`

[ n~)\ enGJ are nonzero, where[e(n
`

v
`

[ n~ v~)D enGJ

nGJ\ [2v0)
r
B cos s
e

(4)

is the Goldreich-Julian density, with the angular speed of)
rrotation of the neutron star and s the angle between the

magnetic and rotation axes. Provided that the multiplicity,
M, is large, one has so that in the restn

`
B n~\ MnGJ,frame, the di†erence in number densities, and inn

`
[ n~,

the bulk velocities, are of order 1/M and can bev
`

[ v~,
neglected to a Ðrst approximation in an expansion in 1/M.
This corresponds to neglecting any gyrotropy, so that the
modes have no circular or elliptical polarization.

2.3. T he RPDF
The RPDF used here (see MGKF) is deÐned by

W (z)\
P
~=

= du
z[ v

df (u)
du

\
P
~1

1 dv
z[ v

df (u)
dv

\
T 1

c3(z[ v)2
U

, (5)

where a partial integration is performed in the Ðnal form
and the deÐnition in equation (1) is used. Di†erent intrinsi-
cally relativistic distribution functions have been chosen in
the literature, including exponential, f (u)P exp ([u2/2u

m
2)

(Lominadze & Mikhailovskii 1979), power-law (Suvorov &
Chugunov 1975), and water bag (Arons & Barnard 1986)
distributions. GMG considered hard-bell and soft-bell dis-
tributions, which are of the form for u2\f (u)P (u

m
2 [ u2)n

with f (u)\ 0 for and GMG also considered au
m
2 u2[ u

m
2 ,

one-dimensional distribution. MGKF explored theJu� ttner

properties of the RPDF in detail and found that its impor-
tant features are not particularly sensitive to the choice of
f (u) for a given ScT. In this paper our detailed results are all
for a distribution,Ju� ttner

f (u) \ e~oc
2K1(o)

, (6)

where o \ m/T is the inverse of the temperature in units of
the rest mass and is a Macdonald function (a modiÐedKl(o)
Bessel function). In this case the various averages may be
evaluated explicitly. Some speciÐc averages are given in
Table 1 along with approximate values in the extremely
relativistic limit o > 1. In particular, one has ScT B 1/o,

and Sc~3T B o, for o > 1. The RPDFv8 2B 1 [ o2 ln (2/o),
(5) for the distribution (6) is related to the functionJu� ttner
deÐned by Godfrey, Newberger, & Taggart (1975),

T (z, o) \
P
~1

1
dv

e~oc
v[ z

, (7)

with the relation being

z2W (z) \ z2T @(z, o)
2K1(o)

. (8)

The imaginary part of this RPDF is

z2 Im [T @(z, o)]
2K1(o)

\ noc03 z3
2K1(o)

exp ([oc0) , (9)

with implying that Landau damping isc0\ (1 [ z2)~1@2,
weak but not strictly zero for and strictly1/o > c0\ O
zero for superluminal waves (z[ 1).

Figure 1 illustrates the changes in the RPDF as one
passes from the nonrelativistic to the mildly relativistic
regime. There is a single peak in the RPDF, with the peak
occurring at a phase speed, z, of order the thermal speed
and with a height that increases with the mean thermal
energy. The asymptotic limit (z] O), which is unity in the
nonrelativistic limit, decreases as the plasma becomes
increasingly relativistic. These e†ects become more extreme
as the particles become extremely relativistic, as shown in
Figure 2, where the RPDF is plotted in a di†erent way to
illustrate these properties. Important details in Figure 2 are
the asymptotic value, which determines the relativistic
plasma frequency, the value at z\ 1, which determines the
minimum frequency of subluminal Langmuir waves, and
the peak value, which determines the maximum frequency
of parallel Langmuir waves.

TABLE 1

RELEVANT AVERAGES OVER THE JU� TTNER DISTRIBUTION

Average Exact Value Value for o > 1

ScT . . . . . . . . . . . . K2(o)] K0(o)

2K1(o)

1

o
ScnT . . . . . . . . . . . . K

n`1(o)

2nK1(o)
] £

i/1

n (n ] 2 [ i)K
n~i

(o)

2nK1(o)

n !

on
Sc~1T . . . . . . . . . K0(o)

K1(o)

o[ ln (2/o)[ 0.577 . . . ]

Sc~(n`1)T . . . . . . Ki
n
(o)

K1(o)

Jn!(n/2)

2!(n/2 ] 1/2)
o

NOTE.ÈAverages are given exactly and in the extremely relativistic limit o > 1.
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FIG. 1.ÈRPDF z2W (z) plotted as a function of phase speed z for three
distributions : o \ 100 (left curve), o \ 10 (center curve), and o \ 1Ju� ttner

(right curve).

2.4. T he Wave Properties
Following MGKF, on writing the wave equation in the

form where e is the polarization vector (which is a"
ij
e
j
\ 0,

unimodular vector along the electric vector of the wave),
one has

"11 \ a [ b
z2 , "22 \ a [ b [ sin2 h

z2 ,

"13\ "31\ b
z2 tan h ,

"33 \ 1 [ u
p
2

u2 z2W (z)[ b
z2 tan2 h ,

a \ 1 ] 1
vA2

, b \ 1 [ v8 2
vA2

. (10)

The dispersion equation factorizes into the following two
equations :

"22\ 0 , (11)

"11"33 [ "132 \ 0 . (12)

Equation (11) gives the dispersion relation for the magneto-
acoustic (or X or t) mode, and equation (11) is the disper-
sion equation for the L-O mode and the mode. TheAlfve� n

FIG. 2.ÈRPDF z2W (z) plotted for three distributions in theJu� ttner
relativistic regime : o \ 0.1 (left curve), 0.05 (center curve), and 0.01 (right
curve). In order to show the extremely large peak just below z\ 1, the
logarithm of z2W (z) is plotted as a function of for z\ 1c0\ 1/(1 [ z2)1@2
and as a function of log (z[ 1) for z[ 1.

polarization vector for the magnetoacoustic mode is along
the 2-axis, and the polarization vector for the other two
modes is in the 1È3 plane, with

e1
e3

\ ["33
"13

\ ["13
"11

, (13)

which are to be evaluated at the appropriate solution of the
dispersion equation (12).

2.5. T he Magnetoacoustic Mode
The dispersion relation for the magnetoacoustic mode

follows from equation (11). Solving for the frequency and
for the phase velocity gives

u
t
(k, h) \ k

AvA2 [ v8 2 cos2 h
vA2 ] 1

B1@2
,

z\ z
t
\
Ab [ sin2 h

a
B1@2

, (14)

respectively. There can be no Landau damping for magne-
toacoustic waves, because the polarization is along the
2-axis and so does not couple to the parallel currents associ-
ated with the motion of the particles along the Ðeld lines.
For the same reason, the magnetoacoustic mode cannot be
generated in a beam instability in which the beam is parallel
to B.

2.6. T he Parallel L angmuir and ModesAlfve� n
The waves of interest here are in the two branches of the

solution of the dispersion equation (12). For parallel propa-
gation (h \ 0) this factorizes into a dispersion equation,

for the parallel Langmuir waves and a dispersion"33\ 0,
equation for the parallel mode, For theseAlfve� n-O "11\ 0.
parallel modes the polarization vectors are along the 3-axis
(longitudinal polarization) and the 1-axis, respectively. The
dispersion relations are plotted in Figure 3 for a mildly
relativistic plasma and in Figure 4 for an extremely rela-
tivistic plasma.

FIG. 3.ÈDispersion curves for a mildly relativistic plasma with a dis-
tribution function andf (u)P (u

m
2 [ u2)3, u

m
\ v

m
/(1 [ v

m
2)1@2, v

m
\ 0.9,

and for three angles : h \ 0 (thin curves), h \ 0.1 (inner solidzA \ 0.95,
curves), and h \ 1 (outer solid curves). For h \ 0, the Langmuir mode is the
rising curve, and the mode is the horizontal line. For the L-OAlfve� n h D 0,
mode is the branch of the curve to the lower right, and the mode isAlfve� n
the branch of the curve to the upper left.
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FIG. 4.ÈDispersion curves analogous to those in Fig. 3 for an
extremely relativistic plasma, ScT\ 100 and (a) The Lang-1 [ zA \ 10~5.
muir mode is the rising curve, and the mode is indistinguishableAlfve� n
from a horizontal line at z\ 1. (b) The panel is on a di†erent scale for
h \ 0.5] 10~3 (innermost curves), 1] 10~3, 2 ] 10~3, and 5 ] 10~3
(outermost curves).

The dispersion relation for the parallel Langmuir mode is

u\ uL(z)\ u
p
[z2W (z)]1@2 , z\ zL\ uL(z)

k
A

. (15)

There is a minimum frequency of Langmuir waves corre-
sponding to the cuto† (k ] 0 for nonzero u) at the fre-
quency given byu

c
,

u
c
\ u

p
[z2W (z)]

z/=1@2 \u
p
Sc~3T1@2 , (16)

which is conventionally identiÐed as the relativistic plasma
frequency. For any extremely relativistic plasma, Sc~3T is of
order 1/ScT in an expansion in powers of 1/ScT (see Table
1). As in a nonrelativistic thermal plasma, the frequency of
the Langmuir waves increases with increasing k (decreasing
z). Their frequency at z\ 1 is denoted given byu1,

u12\ u
p
2W (1)\ u

p
2ScT(1] v8 2) , (17)

above which the parallel Langmuir waves are subluminal. It
follows that in an extremely relativistic plasma, the fre-
quency ratio, is large (DScT ; e.g., Lominadze et al.u1/uc

,
1979). For slightly subluminal Langmuir waves one may
expand in powers of , and to Ðrst order1 [ z\ 1/2c02] . . .
equation (15) gives

uL2(z)\ u
p
2[Sc~3(1[ v)~2T ] 2(1 [ z)

]Sc~3(1[ v)~2T ] É É É ]

\ u
p
2 2ScT[1] 2Sc3T/ScTc02] É É É ] , (18)

where the Ðnal expansion is in powers of both 1/ScT and
1/c0.Although the parallel Langmuir mode extends into the
subluminal range z\ 1, it extends only for a narrow range
of phase speeds where is the phase speedzpeak [ z\ 1, zpeakat which z2W (z) has its peak value. Landau damping
becomes strong at (see Fig. 1 and MGKF).z[ zpeakThe other factor in the dispersion equation (12) for paral-
lel propagation gives which gives the dispersion"11 \ 0,
relation for the mode :Alfve� n-O

z\ zA , zA \
Ab
a
B1@2 \

AvA2 [ v8 2
1 ] vA2

B1@2
. (19)

This dispersion relation is the same as for the magneto-
acoustic mode for parallel propagation (see eq. [14]). The
electric vector for parallel mode waves is alongAlfve� n-O
the 1-axis, so there is no Landau damping for the same
reason as for the magnetoacoustic mode.

2.7. Oblique Waves
The dispersion relation (12) may be written in the form

u2
u

p
2\ z2W (z)(z2[ zA2)

z2[ z
B
2 (20)

(MGKF), with and In the limitzA2 \ b/a z
B
2\ zA2 ] b tan2 h.

of parallel propagation one has and equation (20)z
B
] zA,

reproduces the dispersion relation (15) for parallel Lang-
muir waves for with the dispersion relation forzD zA,
parallel mode. For these two dispersionAlfve� n-O zA [ z0curves intersect, deÐning a crossover frequency uco,

uco\ u
p
[zA2 W (zA)]1@2 , (21)

and a corresponding wavenumber As pointedk
A

\ uco/z.out in earlier literature (e.g., Hardee & Rose 1976 ; Arons &
Barnard 1986) and as illustrated in Figure 3, for slightly
oblique propagation the dispersion curves reconnect near
this intersection point and then deviate away from each
other with increasing h. The higher frequency reconnected
mode is the L-O mode, and in the limit h ] 0 it reduces to
the mode for and to the Langmuir modeAlfve� n-O u[ucofor The lower frequency branch is theu\uco. Alfve� n
mode, and in the limit h ] 0 it reduces to the Langmuir
mode for and to the mode foru[uco Alfve� n-O u\uco.The expressions in equation (13) for the polarization
vector may be rewritten in the notation used in equation
(20). Two forms are

e1
e3

\ [ z2[1[ uL2(z)/u2][ b tan2 h
b tan h

\ [zA2 tan h
z2[ zA2

, (22)

with the frequency (15) of parallel Langmuir waves.uL(z)

2.8. T he L -O Mode
The L-O mode exists only for The lowest fre-z[ z

B
.

quency L-O mode waves are near the Langmuir cuto† at
(see eq. [16]), which is independent of h in the limitu\u

cz] O. Equation (20) implies that the cuto† frequency is
given by equation (16) independent of h. The Ðnal form of
equation (22) shows that near the cuto†, one has e1/e3] 0,
so that the polarization is along B, which is longitudinal
only for parallel propagation. The highest frequency L-O
mode waves correspond to in equation (20). Thez2] z

B
2

polarization of these waves is given by e1/e3] [1/a tan h,
which is a transverse polarization in the approximation
a B 1. SpeciÐcally, the longitudinal part of the polarization
is sin h cos h/vA2 > 1.

Most of the interest here is in the subluminal L-O mode
waves. The waves can be subluminal only for andz

B
\ 1,

such waves exist only above a minimum frequency, u1(h),
and at angles of propagation less than a maximum, hmax.The frequency above which the L-O mode is subluminal is
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given by

u12(h)\ u
p
2W (1)

(1[ zA2)
1 [ z

B
2

B u
p
2ScT(1] v8 2)

A
1 [ vA2 h2

1 ] v8 2
B~1

, (23)

where is assumed in the approximate form. ThevA2 ? 1
region of subluminal waves moves to higher frequencies
with increasing h and disappears above a maximum angle,

given byh \ hmax,

hmax B
A1 ] v8 2

vA2
B1@2

, (24)

for The polarization is nearly transverse for u?vA2 ? 1.
with and for h > 1. For theuco, e1B 1 e3 Bh uBucopolarization may be approximated by

e1
e3

B [1 [ uL2(z)/u2[ h2
h

. (25)

The waves become increasingly longitudinally polarized,
in the limit and h ] 0, correspondinge1/e3] 0, u] uL(z)to the parallel Langmuir mode.

Mode2.9. Alfve� n
The lower frequency reconnected mode is the oblique

mode, and its dispersion relation follows directlyAlfve� n
from equation (20), as discussed by GMG and MGKF. In
contrast to the L-O mode, the dispersion curve for the
oblique mode deviates to lower frequencies andAlfve� n
lower phase speeds with increasing h. For equa-u2> uco2 ,
tion (20) gives

z2B zA2 [ u2
uco2

h2 , (26)

and the polarization may be approximated by equation
(25). This polarization is nearly along the 1-axis :

e1
e3

B
uL2(z)
u2 h

. (27)

3. RELATIVISTIC PLASMA EMISSION

In this section, analytic approximations for beam insta-
bilities in a pulsar plasma are summarized, and how the
resulting wave turbulence produces escaping radiation is
brieÑy discussed.

3.1. Kinetic and Reactive (Hydrodynamic) Beam Instabilities
In the class of models of interest here, there is a back-

ground plasma through which a higher energy, lower
density beam propagates. The background plasma deter-
mines the properties of the waves, and the beam determine
the wave growth. The beam is assumed to have a speed

(where is its Lorentz factor), a spreadv
b
\ (c

b
2[ 1)1@2/c

b
c
bin Lorentz factors, a number density and a distribu-*c

b
n
b
,

tion function f
b
(u).

The spread in Lorentz factors depends on the model.*c
bFor a beam of primary particles, the spread is expected to

be small because of the fact that all the particles are acceler-
ated by the same parallel electric Ðeld. A beam of secondary
particles, perhaps propagating through a plasma domi-
nated by tertiary particles, may be quite broad. Here we
simply assume that is sufficiently small that the beam*c

bparticles do not overlap signiÐcantly with the background
particles.

Wave growth can occur in two limiting cases : a kinetic
instability, in which the growth rate is smaller than the
intrinsic bandwidth of the growing waves, and a reactive
instability (also called a hydrodynamic instability), in which
this inequality is reversed (e.g., Egorenkov et al. 1983 and
the review by Lominadze et al. 1986). Provided that these
inequalities are strong ones the two limiting cases may be
treated separately. The beam appears in the dispersion
equation through a correction from to with thed"33 "33,imaginary and real parts of being relevant for thed"33kinetic and reactive instabilities, respectively.

A kinetic instability is treated as negative absorption,
which involves the imaginary part of Im because ofW

b
(z)

the beam, with

Im d"33 \ [u
p
2

u2 z2 Im W
b
(z)

\ [u
p
2

u2 z2n n
b
n

c03
Cdf

b
(u)

du
D
u/c0 z

. (28)

The reactive instability is treated by including the contribu-
tion of the real part of to the dielectric tensor andW

b
(z)

neglecting the spread in Lorentz factors in the beam:

Re d"33 \ [u
p
2

u2 z2 Re W
b
(z) \ [u

p
2

u2
n
b
n

z2
c
b
3(z[ v

b
)2 . (29)

A reactive instability then occurs when the dispersion equa-
tion has complex solutions, with the growth rate identiÐed
as the imaginary part of the growing solution.

3.2. Growth of Parallel L angmuir Waves
A beam propagating along B implies a current along B,

and this couples to any wave that has an electric vector with
a component along B. Parallel Langmuir waves have their
electric Ðeld along B, but magnetoacoustic and parallel

modes have their electric vector orthogonal to B.Alfve� n-O
Hence, for parallel propagation, only Langmuir waves grow
because of a beam instability.

In the case of the kinetic instability, we neglect the beam
contribution into the real part of retaining only the"33,imaginary part. The dispersion equation becomes

1 [ u
p
2

k
A
2 W (z) [ in

u
p
2

k
A
2
An

b
n
B c

b
3

(*c
b
)2 \ 0 , (30)

where it is implicit that has a small imaginary partz\ u/k
Acorresponding to wave damping or growth. Ignoring the

imaginary terms, equation (30) reproduces the dispersion
relation (15), and the imaginary terms are evaluated at this
dispersion relation in order to Ðnd the absorption coeffi-
cient or growth rate. In estimating the Ðnal term in equation
(30), we assume that corresponds to the maximumz\ v

bgrowth rate (approximately the maximum slope of the beam
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distribution function) and that is the e†ective width of*c
bthe beam, and we make the approximations andfD 1/*c

bdf/du D 1/(*c
b
)2.

From the foregoing analysis of the wave dispersion, at the
resonance one has and the growth rate, !,k

A
D u

p
ScT1@2,

may be approximated by

!
u

D
An

b
n
B c

b
3

(*c
b
)2

1
W @(z)

, (31)

W @(z)\
P
~=

= du
(z[ v)2

df
du

D Sc3T D ScT3 . (32)

Assuming comparable energy density in the beam and
plasma background, one ÐndsnScT D n

b
c
b
,

!
u

D
A c

b
ScT*c

b

B2
. (33)

The condition for validity of the kinetic approach is ![
*u, where *u is the bandwidth of the excited waves, esti-
mated to be Hence the condition for the*u/uD *c

b
/c

b
3.

kinetic version of the instability to apply reduces to

!
*u

D
A c

b
ScT
B2A c

b
*c

b

B3
[ 1 . (34)

The condition (34) is never satisÐed, because one always has
and Hence the beam instability of parallelc

b
[ ScT *c

b
.

Langmuir waves can only be a reactive instability.
The reactive or hydrodynamic instability applies when

the spread in velocities is unimportant and is conveniently
analyzed by setting the spread to zero by assuming f

b
\

This gives a dispersion equationd(v[ v
b
)/c.

1 [ u
p
2

k2 W (z)[ n
b

n
u

p
2

c
b
3(u[ k

A
v
b
)2\ 0 . (35)

As shown by Egorenkov et al. (1983), one can distinguish
two cases : the ““ resonant case, ÏÏ in which the growth rate is
of the form and the ““ nonresonant case,ÏÏ in!P (n

b
/n)1@3,

which the growth rate is of the form The reso-!P (n
b
/n)1@2.

nant case, which has the larger growth rate, is centered on
the frequency given by setting in the dispersion rela-z\ v

btion for parallel Langmuir waves, which gives u02\
and this frequency is of the same order of mag-u

p
2 v

b
2 W (v

b
),

nitude as for implying A correction tov
b
] 1, u02D u

p
2ScT.

this frequency is introduced by writing andu\u0] du
hence with Substitutingz\ v

b
(1 ] du/u), k

A
\u/v

b
D u0.into equation (35) one Ðnds

Adu
u
B3

D [
An

b
n
B 1

c
b
3W @(v

b
)
, (36)

so that the growth rate for the reactive instability (in the
resonant case) is given by

!
u

D
An

b
n
B1@3 1

c
b
ScT

. (37)

The results for parallel propagation remain approx-
imately valid for waves at sufficiently small angles of propa-
gation. The range of h over which the waves may be
assumed approximately parallel may be estimated from the
expressions in equation (20) for the dispersion relation and
in equation (22) for the polarization of oblique waves.
Assuming for resonance with the beam, parallelz\ v

bapproximation is approximately valid for h2[ o v
b
2 [ zA2 o ,

which requires For h greater thanh [ min [1/vA,1/c
b
].

about the minimum of and the waves should be1/vA 1/c
b
,

treated as L-O mode waves or oblique waves.Alfve� n

3.3. Growth of Oblique Waves
In discussing growth of oblique waves, it is helpful to

represent the resonance condition graphically and to
compare the oblique case with the case of parallel propaga-
tion. In Figure 5 the dispersion curves are indicated sche-
matically, in the same format as in Figures 3 and 4, with the
dashed curves for parallel propagation and the solid curves
for oblique propagation. The resonance condition, z\ v

b
,

corresponds to a horizontal line, and two cases are illus-
trated, one with (dotted line, labeled r1 in Fig. 5) andv

b
[ zAthe other with (dotted line, labeled r2 in Fig. 5). Av

b
\ zAresonance corresponds to the intersection of the relevant

dotted line with the dispersion curve for the waves. For
parallel propagation, resonance is possible for parallel
Langmuir waves, as indicated in the two cases indicated by
circles where these lines intersect the dispersion curve for
Langmuir wave (labeled L). The dispersion curve (the line

for parallel waves is parallel to the line z\z\ zA) Alfve� n
so that resonance is not possible, except for the specialv

b
,

case when the lines coincide (which case is discussedv
b
\ zAbelow).

For oblique propagation, growth of L-O mode waves is
possible only for and growth of waves isv

b
[ zA, Alfve� n

possible only for This may be seen by inspection ofv
b
¹ zA.

the intersection of the dotted lines and solid curves in
Figure 5 : only line r1 can intersect the dispersion curve for
L-O mode waves, and only line r2 can intersect the disper-
sion curve for waves.Alfve� n

Resonance of the beam with L-O mode waves at high
frequencies is possible only at a speciÐc angle foru2? uco2This follows from the dispersion relation (12) in thev
b
[ zA.

limit when one has implyingu/u
p
] O "33B 1 [ tan2 h,

that high-frequency L-O mode waves have a dispersion
relation where we assume h2> 1 and a B 1,z2\ zA2 ] h2,
b B 1 in equation (10). The resonance condition z\ v

b

FIG. 5.ÈSchematic plot of dispersion curves analogous to those in Figs.
3 and 4 for a small range near the crossover frequency, where theuco,dispersion curves for the parallel Langmuir mode (dashed curve, labeled L)
intersect the dispersion curves for the parallel mode (horizontalAlfve� n
dashed line). The thick curves indicate dispersion curves for oblique L-O
mode (lower right) and waves (upper left). The lines r1 and r2 rep-Alfve� n
resent resonances at with and respectively, and thez\ v

b
v
b
[ zA v

b
\ zA,

circles denote the corresponding resonant parallel Langmuir waves.
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determines the angle at which resonance ish \ (v
b
2[ zA2)1@2

possible. When this condition is satisÐed, L-O mode waves
over a broad range of frequencies can resonate with the
beam particles, and hence a kinetic instability is appropri-
ate. It follows from equation (25) that these waves have

and this factor appears in the growth ratee32D h2,
As a consequence, L-O mode waves grow more(n

b
] e32 n

b
).

slowly than do parallel Langmuir waves.
The dispersion relation for the mode at low fre-Alfve� n

quencies approaches independent of h(u2>uco2 ) z\ zA(see eq. [26]). It follows that the resonance condition z\ v
bis satisÐed only in the special case In this case thev

b
\ zA.

spread in velocities in the beam needs to be taken into
account, and the resonance can be satisÐed over a broad
range of frequencies so that any instability is kinetic in
nature. The growth rate is evaluated by including the ima-
ginary part of (see eq. [28]) in the dispersion equationd"33(12). This gives

!
u

\ nh2 n
b

n
c
b
3

ScT
Adf
du
B
v/zA

, (38)

with growth corresponding to This beam(df
b
/du)

v/zA
[ 0.

instability favors the highest frequency waves.Alfve� n
In summary, wave growth is most favorable for parallel

and nearly parallel Langmuir waves whose polarization is
approximately longitudinal. L-O mode waves over a broad
range of much higher frequencies can grow at a speciÐc
angle for waves over ah \ (v

b
2[ zA2)1@2 v

b
[ zA. Alfve� n

broad range of much lower frequencies can grow, but only
when the condition is satisÐed to within the velocityv

b
\ zAspread of the beam. However, growth favors the lowest

frequency for L-O mode waves and the highest frequency
for waves, so that all three cases suggest that growthAlfve� n
of a wave with is favored.uDu

p
ScT1@2

3.4. Escape of Radiation
In order to be observed as radio emission by a distant

observer, the waves must be able to leave the pulsar magne-
tosphere. Once a wave is excited it propagates outward in
the pulsar plasma, which has a gradually decreasing density
and ambient magnetic Ðeld. Along the outward path the
cyclotron frequency, plasma frequency, and speedAlfve� n
decrease. Eventually a wave encounters the cyclotron reso-
nance, and if it has a nonzero (L-O and obliquee1 Alfve� n
waves) or (magnetoacoustic waves) it experiences cyclo-e2tron damping. In the following discussion we ignore the
e†ects of the cyclotron resonance, which will be discussed
elsewhere.

Consider the e†ects of the inhomogeneity of the plasma
on the propagation of parallel Langmuir waves as they pro-
pagate outward. Three e†ects need to be taken into
account. First, as decreases along the ray path, the dis-u

ppersion relation (15) requires that z decrease and hence that
increase (with u constant in the absence of temporalk

Avariations in the plasma parameters). In the absence of
other e†ects, this decrease in z ultimately drives the waves
into the region of phase speed where Landau damping is
strong, and the waves are then absorbed by the background
particles. Second, the curvature of the Ðeld lines causes the
angle h to increase (assuming that it is initially negligible).
For L-O mode waves this implies an increase in phase
speed, and only a modest increase is required to drive the
waves into the superluminal range where they are

undamped and escape freely. Third, mode coupling needs to
be taken into account in an inhomogeneous plasma. Mode
coupling is e†ective only near a coupling point, and the only
coupling point in the present theory is at andu\ucoh \ 0, where the dispersion curves for the parallel Langmuir
and parallel modes intersect. The signiÐcance ofAlfve� n
mode coupling in the present case can be understood by
considering the fate of the resonant parallel Langmuir
waves generated at the two resonances illustrated by circles
in Figure 5. The resonance associated with line r2 occurs
above the crossover frequency, and such waves move to the
right along the dashed dispersion curve in Figure 5 as they
propagate outward, until they encounter the region of
strong Landau damping, where they are absorbed. The
resonance associated with line r1 occurs below the cross-
over frequency, and such waves encounter the coupling
point as they propagate outward. If the inhomogeneity is
sufficiently weak, then even for very small h the waves are to
be regarded as L-O mode, which move to the right, on the
curve L below the coupling point and on the dispersion
curve above the coupling point. Hence such wavesz\ zAescape. Mode coupling implies that in a small range of h
about h \ 0 the waves may tunnel through the coupling
point and emerge on the upper right branch of the disper-
sion curve labeled L, so that they propagate into the region
of strong Landau damping and are absorbed.

Finally, consider oblique waves generated at u>Alfve� n
As such waves propagate outward they approach theuco.maximum frequency of the mode (see Fig. 3), whereAlfve� n

Landau damping by the background plasma is strong.
Thus, if a beam instability is e†ective in generating Alfve� n
waves, these cannot escape, and escaping radiation can
result only through partial conversion of the energy Ñux in
the waves into either magnetoacoustic waves or L-OAlfve� n
mode waves.

We should remark that although magnetoacoustic waves
can freely escape from the pulsar magnetosphere, these
waves cannot be generated by a beam instability and thus
are not directly relevant to RPE.

This discussion suggests that the most favorable form of
RPE is a beam instability that generates parallel Langmuir
waves, which propagate outward as L-O waves and escape
the magnetosphere (provided cyclotron absorption, which
we ignore here, is unimportant). This free escape is possible
only if the condition is satisÐed (see the line r1 inv

b
[ zAFig. 5).

4. TRANSFORMATION TO THE PULSAR FRAME

The analysis above is carried out in the rest frame of the
plasma, where the net streaming speed of the background
plasma is zero. A more relevant frame is the pulsar frame, in
which the secondary pair plasma is Ñowing out along the
Ðeld lines at a highly relativistic speed. The values of quan-
tities in the two frames are related by a Lorentz transform-
ation. Let the streaming speed of the outÑowing plasma in
the pulsar frame be with Lorentz factorv

s
, c

s
\ 1/

Let quantities in the pulsar frame be denoted by(1[ v
s
2)1@2.

primes, with quantities in the plasma rest frame unprimed,
as in the discussion above.

The relations between the Lorentz factors and beam
velocities in the pulsar frame and the corresponding quan-
tities in the plasma rest frame are

c
b
@ \ c

s
c
b
(1] v

b
v
s
) , (39)
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which implies when all Lorentz factors are large.c
b
Bc

b
@ /2c

sThe relations between the frequency, u@, and the phase
speed, z@, in the two frames are

u@\ c
s
(z] v

s
)

z
u , z@\ z] v

s
1 ] zv

s
. (40)

For forward-propagating waves, z[ 0, the frequency is
always higher in the pulsar frame (u@[ u). The waves of
interest here have phase speed close to the speed of light,
zB 1, and then equation (40) implies foru@B 2c

s
u c

s
? 1.

The perpendicular wavenumber does not change,
k@ sin h@\ k sin h, and this implies that in the pulsar frame,
the radiation is strongly collimated into a forward cone
D1/c

s
2.

The parameters ScT, and are all deÐned in thev8 2, u
p
, vArest frame, and analogous parameters can be deÐned in the

pulsar frame. The number density in the pulsar frame is
and the magnetic Ðeld is una†ected by a Lorentzn@\ nc

s
,

transformation along the magnetic Ðeld lines (B@\ B).
Hence on deÐning parameters in the pulsar frame corre-
sponding to the plasma frequency, andu

p
@ \ (e2n@/v0m)1@2,

the speed, one hasAlfve� n vA@ \ B@/(k0 n@mSc@T@)1@2,

u
p
@ \ c

s
1@2u

p
, vA@ \ vA

21@2c
s
, (41)

where the extremely relativistic approximation is assumed
in the latter.

5. CONSTRAINTS ON RPE

In this section it is argued that for the form of RPE in
which parallel Langmuir waves grow in the beam insta-
bility, the predicted frequency of emission is incompatible
with the observed range of emission for pulsars. It is then
argued that the essential condition required forv

b
\ zA,

waves to grow in the beam instability, imposes aAlfve� n
severe constraint on the allowable parameters that is not
plausibly satisÐed for typical pulsars.

5.1. Frequency of L angmuir Waves
Suppose that the beam instability generates parallel

Langmuir waves. Then the typical frequency of the RPE
that results is approximately the frequency of the Langmuir
waves. This is that is, the frequency deÐned byDu1@ , u1equation (17) transformed to the pulsar frame. Thus the
implied emission frequency is u@B 2c

s
1@2ScT1@2u

p
@ .

Assuming that the electron density, n@, is M times the
Goldreich-Julian density, where P is the period of2v0B/eP,
rotation, the numerical value of this frequency is estimated
to be

Au@
2n
B

D (10 GHz)
A B

*
1012 G

B1@2A P
100 ms

B~1@2A r
R

*

B~3@2

] (MScTc
s
)1@2 , (42)

where the magnetic Ðeld is assumed dipolar in the sense that
it varies according to with distance r from theB\ B

*
R

*
3/r3

surface of the star The parameters M, ScT, and(r \R
*
). c

s
,

are poorly constrained by existing models. In particu-r/R
*lar, estimates of based on radius-to-frequencyr/R

*mapping suggest but uncertainties remainr/R
*

D 10È102,
in the interpretation of the relevant data (see, e.g., recent
summaries by Kramer et al. 1997 and Kijak & Gil 1998). A
seemingly plausible choice of values is M D 104, ScTD 102,

and Then, with BD 1012 G andc
s
D 102, r/R

*
D 102.

PD 100 ms, equation (42) gives a frequency D100 GHz,
which is much higher than the typical frequency of emis-
sion, D1 GHz, of pulsars. Even with M D 1, ScT D 10, c

s
D

and one cannot account for this typical fre-10, r/R
*

D 102,
quency. Moreover, the peak of the radio spectrum for many
pulsars is well below 1 GHz, and it is seemingly impossible
to account for this in terms of equation (42).

It is concluded that RPE due to a beam instability gener-
ating parallel Langmuir waves is incompatible with the
observed frequencies of pulsar radio emission for seemingly
plausible parameters, as suggested by Kunzl et al. (1998).
With Langmuir waves considered unacceptable on this
basis, growth of L-O mode waves is similarly excluded
because their frequency is higher than that of parallel Lang-
muir waves. According to this argument, only RPE associ-
ated with growth of waves at would beAlfve� n u@ >u1@consistent with the observed frequencies.

5.2. Requirement for Beam Resonance with WavesAlfve� n
waves at can grow only if the resonanceAlfve� n u@> u1@condition is satisÐed. Using equations (39) and (41),z@\ v

b
@

this condition becomes

c
b
@ \ 4c

s
2 )

e
u1@

. (43)

On reexpressing as in equation (42), equation (43)u1@becomes

c
b
@ \ 5 ] 108
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]
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. (44)

Equation (44) may be interpreted as specifying the distance,
at which the beam instability can generater/R

*
, Alfve� n

waves :

r
R

*
\ 6 ] 105

A B
*

1012 G
B1@3A P

100 ms
B1@3A c

s
3

c
b
@2MScT

B1@3
.

(45)

For plausible parameters (e.g., M D 104, ScTc
s
D 102,

somewhat smaller than and somewhat larger thanc
s
, c

b
@ c

s
)

this distance is too large to be of relevance ; speciÐcally, it is
well outside the light cylinder, where the dipole approx-
imation used in its derivation is invalid. This conclusion
applies to both normal pulsars and millisecond pulsars.

The only obvious exception that would allow the reso-
nance to occur inside the light cylinder is if the beam energy
is very high. For example, assuming that the primary par-
ticles constitute the beam and assuming andc

b
@ DMc

sthe Ðnal factor in equation (45) is D1/M, and forScTD c
s
,

M D 104 the resonance condition is satisÐed inside r/R
*

\
103 for plausible parameters. However, this suggestion does
not overcome another difficulty : the growth rate in equa-
tion (38) favors the maximum frequency, consistent with its
derivation, and this frequency is too high to be com-(Du1)patible with the observations for the reasons discussed
above.

6. DISCUSSION AND CONCLUSIONS

In this paper a detailed treatment of the properties of
waves in polar-cap models for pulsar radio emission is
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applied to a critical analysis of RPE due to a beam insta-
bility. The wave properties are derived in the rest frame of
the plasma and then transformed to the pulsar frame for
comparison with observations. It is well known that there
are three wave modes in a pulsar plasma, and one of these,
the magnetoacoustic mode (or X mode or t mode), is strictly
transverse and does not couple to the beam motion. Pos-
sible beam instabilities lead to the generation of parallel
Langmuir waves, oblique L-O mode waves at a much
higher frequency than the parallel Langmuir waves, or
oblique waves at a much lower frequency than theAlfve� n
parallel Langmuir waves. It is found that none of these
instabilities can account for the observed radio emission for
parameters that are considered plausible in polar-cap
models.

The estimated frequency of RPE for parallel Langmuir
waves is given by equation (42), and for plausible param-
eters, this frequency is much higher than the typical
observed frequency of pulsar radio emission (Kunzl et al.
1998). This appears to exclude RPE due to a beam insta-
bility generating Langmuir waves. A beam instability gener-
ating L-O mode waves is excluded for the same reason. The
reason that a higher frequency for emission due to this
mechanism is estimated here than by most earlier authors
may be summarized as follows : It is well known that Lang-
muir waves in a nonrelativistic plasma have frequencies just
above the plasma frequency, and thatu

p
\ (e2n

e
/e0m)1@2,

they have a cuto† at The corresponding cuto† fre-u
p
.

quency in a relativistic plasma is (see z] O inu
p
Sc~3T1@2

eq. [15], with k ] 0 in the Ðnal form in eq. [5]). This might
suggest that in a relativistically streaming (Lorentz factor c

s
)

plasma, Langmuir waves have a lower frequency, u
p
c
s
~3@2,

than in the absence of relativistic e†ects. However, the
reverse is the case. First, note that for an intrinsically rela-
tivistic plasma in its rest frame one has Sc~3T D 1/ScT, and
the cuto† frequency is and notDu

p
ScT~1@2 Du

p
ScT~3@2.

More importantly, to grow in a beam instability the Lang-
muir waves must be subluminal, and they are subluminal
only for On transforming from the plasmauZu

p
ScT1@2.

rest frame to the pulsar frame, the frequency u1B u
p
ScT1@2

is Lorentz-boosted to the frequency u1@ Bu
p
@ 2c

s
ScT1@2,

where is the plasma frequency in the pulsar frame. Thusu
p
@

the predicted frequency of emission for this version of RPE
is much higher than the plasma frequency for plausible
parameters (see eq. [42]).

The foregoing discussion is based on the assumption that
the beam is weak, in the sense that it does not modify the
wave dispersion signiÐcantly. The referee pointed out to us
that this may not be the case if the beam density is relatively
high. Weatherall (1994) discussed the beam instability for
two beams of comparable densities, one with a highly rela-
tivistic temperature and the other with a nonrelativistic
temperature, and found maximum growth for k \ 0.29u

pfor the parameters chosen. Weatherall did not plot the real
part of the frequency, and presumably it is signiÐcantly
modiÐed from the weak-beam case, when k \ 0.29 u

pwould correspond to superluminal Langmuir waves. The
implications of relaxing the weak-beam approximation
need to be explored further. Our discussion assumes a weak
beam with a relativistic velocity spread, whereas Weather-
allÏs (1994) discussion applies to a stronger beam with a
nonrelativistic spread.

It is concluded either that the parameters in the source
region are quite di†erent from what is currently considered

plausible or that RPE due to Langmuir waves generated in
a beam instability is not the emission mechanism. Let us
consider whether it is possible for the parameters to be
modiÐed in such a way that the predicted frequency in
equation (42) is compatible with observed frequencies.
Suppose the plasma density were not much di†erent from
the Goldreich-Julian value (the multiplicity M D 1) and
that the plasma is only mildly relativistic (all cÏs of order
unity). Then the frequency in equation (42) is of order the
observed frequencies for in the plausible range 10È102.r/R

*Could the radio emission arise in such anomalously low-
density mildly relativistic regions, presumably at the edges
of the bulk of the outÑowing relativistic plasma? There is
some support for this suggestion from the interpretation of
the polarization of pulsar radio emission by von Hoens-
broech, Lesch, & Kunzl (1998), who found that the data are
compatible with a model in which the background plasma
is essentially cold and of one predominant sign of charge in
its rest frame. However, there is no theoretical basis for such
a model, and it seems more plausible to consider alternative
emission mechanisms that are compatible with existing
polar-cap models than to seek to modify the model in such
a drastic way.

The remaining possibility for RPE due to a beam insta-
bility is the growth of low-frequency waves.(u> u1) Alfve� n
However, the resonance condition for the growth of Alfve� n
waves due to a beam instability cannot be satisÐed in the
polar-cap regions for seemingly plausible parameters (see
eq. [45]). An exception is for an instability due to extremely
energetic particles, such as the beam of primary particles.
However, a further difficulty arises with this suggestion, in
that the growth rate increases with increasing frequency,
favoring waves with frequencies comparable to and sou1encountering the same incompatibility with observations as
for Langmuir waves. Moreover, the instability for Alfve� n
waves with a beam of given energy occurs at one speciÐc
height, requiring that all frequencies be emitted from essen-
tially the same height. Although this is not excluded by
observations, the interpretation of the data in terms of a
radius-to-frequency mapping seems much more plausible.

The simplest interpretation of these results is that RPE
due to a beam instability, in either Langmuir waves or

waves, is not the pulsar emission mechanism. TheAlfve� n
other pulsar emission mechanisms mentioned in ° 1 need to
be reconsidered critically to see which of these remain viable
when they are analyzed in a similar critical way.

Another general conclusion is that whatever the emission
mechanism is, it must produce radiation at well below the
frequency of the subluminal Langmuir waves. Of the pos-
sible waves, only superluminal L-O mode and magneto-
acoustic waves can escape from the plasma. In either case,
the escaping radiation would be entirely in the one mode
that is linearly polarized. This can account for the well-
known sweep of the linear polarization in the single-vector
model of Radhakrishnan & Cooke (1969), but it cannot
explain the rich variety of other observational features rela-
ting to polarization. Thus a further implication is that other
features of the observed polarization must be imposed as a
propagation e†ect, perhaps when the radiation passes
through the region where it is in cyclotron resonance with
the particles in the plasma (e.g., Mikhailovskii et al. 1982).

D. B. M. thanks Simon Johnston, Qinghuan Luo, and
Andrew Willes for helpful comments on the manuscript.
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