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Abstract. To get more reliable constraints on the reconstruction of gravitational lenses, we are working on a
method to extract relative magnification matrices of the lensed images directly from VLBI visibilities. Instead of
independently reconstructing multiple images of the source, we describe the sky brightness distribution by that of
one of the images, plus a set of linear coordinate transformations for the other images characterising the action of
the lens; parameters then are to be adjusted by fitting visibilities.
To parameterise the brightness profile of the source we use the shapelet formalism as introduced by Refregier (2001).
Within this formalism a localised object is linearly decomposed with respect to a complete set of orthonormal basis
functions. These basis functions have a number of remarkable mathematical properties – simple behaviour under
Fourier transform, convolution and coordinate transformations. This makes them a promising candidate to model
compact sources as observed in strong gravitational lensing.

1. Introduction

VLBI serves as a powerful tool for high resolution studies
of gravitational lens systems. Identification of substruc-
ture in the multiple images of a distant source allows com-
putation of relative magnification matrices, which are used
as constraints on the reconstruction of the lens.
While past investigations (e.g. Barkana et al. 1999) of

the gravitational lens mapping depended on the analysis
of reconstructed images, our aim is to perform the same
type of analysis directly on the measured visibilities. This
requires an efficient method to model the sky brightness
distribution and analytical access to the related visibili-
ties.
These requirements are met by the shapelet formalism

as introduced by Refregier (2001).

2. Shapelets

The solutions to the quantum harmonic oscillator (QHO)

φn(x) =
1√

2n
√
π n!

Hn(x) e
−x2/2 , (1)

where n is an integer and Hn(x) is a Hermite polynomial
of order n, form a complete set of orthonormal functions,
that can be used as set of basis functions in function space
(e.g. Elbaz 1998). The φn(x) can be thought of as per-
turbations around the Gaussian φ0(x) and now will be
referred to as Shapelets (Refregier 2001).

2.1. Basis functions

To describe a 1-D object of characteristic scale β from (1)
one defines dimensional basis functions

Bn(x;β) =
1
√
β
φn(β

−1x) , (2)

where the scale parameter β is typically chosen to be close
to the size of the object. The functions Bn(x;β) again
are complete and orthonormal, such that an object profile
f(x) can be expanded as

f(x) =

∞∑

n=0

fn Bn(x;β) . (3)

From the orthonormality relation for the Bn(x;β), the
shapelet coefficients are given by

fn =

∫ +∞

−∞

dx f(x)Bn(x;β) . (4)

The basis functions for 2-dimensional objects can now
be constructed by taking the tensor product of two 1-
dimensional basis functions:

φn(x) = φn1
(x1)φn2

(x2) , (5)

Bn(x;β) =
1

β
φn(β

−1x) . (6)

where x = (x1, x2) and n = (n1, n2). These basis func-
tions again form an orthonormal basis for smooth, inte-
grable functions in two variables, such that the 2-D profile
f(x) of an object can be decomposed as

f(x) =

∞∑

n1,n2=0

fn Bn(x;β) . (7)

2.2. Transformation properties

The shapelet basis functions have a number of remarkable
mathematical properties that can be used for photometric
purposes and the analysis of interferometric data (Chang
& Refregier 2002):
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Fig. 1. Multiple imaging of a distant object in gravitational
lensing.

– The Fourier transform of the dimensional basis func-
tion Bn(x;β) is given by

B̃n(k;β) = in Bn(k;β
−1) , (8)

that is a basis function with inverted scale β → β−1.
– The total flux

F ≡
∫
d2x f(x) (9)

of an object can be written completely in terms of the
coefficients fn1n2

.
– For a general linear coordinate transformation of the
form

x → x′ = (1 +M)x+ ε , (10)

where M is a 2 × 2 matrix and ε = (ε1, ε2) is a small
displacement, the transformed object profile f ′(x′) =
f(x(x′)) can be obtained from f(x), using the opera-
tor formalism established from quantum theory.

– Convolution (e.g. under action of PSF) of functions
f(x) and g(x)

h(x) = (f ∗ g)(x)

can be expressed in terms of shapelet coefficients

hn =
∑

m,l

Cn,m,lfmgl , (11)

where Cn,m,l is the 2-dimensional convolution tensor.

3. Description of gravitational lens systems

forming multiple images

Linearisation of the lens equation yields that the lens map-
ping can be described locally using symmetric 2 × 2 ma-
trices. However it turns out (Fig. 1), that these matrices
cannot be accessed by observation – only relative matrices
can be observed (e.g. Narayan & Bartelmann 1996).
Considering a general linear coordinate transforma-

tion, a function f(x) transforms as

f(x) → f ′(x′) = f(x(x′)) = f(M−1(x′ − s)) , (12)
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Fig. 2. Brightness distribution generated using a shapelet-
based source model and a set of linear coordinate transfor-
mations.

whereM is a general 2×2 matrix and s a vector to account
for a shift in position. Using one such linear coordinate
transformation for each of the lensed images m we can
write for the sky brightness distribution (Fig. 2):

I ′(x′) =
∑

m

I ′
(m)
(x′)

=
∑

m

I
(
M

(m)−1(x′ − s(m))
)

=
∑

m,n

fn Bn

(
M

(m)−1(x′ − s(m));β
)

(13)

Due to the properties of the shapelet basis functions under
Fourier transform, eq. (8), the Fourier transform of the sky

brightness distribution (13), Ĩ(u, v), again can be written
completely in terms of the shapelet basis functions.
With this we are working on a χ2 fit

χ2 =
∑

u,v

[
Vm(u, v)− Ĩ(u, v)

σ(u, v)

]2

, (14)

to minimise the difference between measured visibilities
Vm and model visibilities Ĩ, as given by the shapelet coeffi-
cients fn and the coordinate transformations parameters.

Acknowledgements. L.B. acknowledges partial support from
the EC ICN RadioNET (Contract No. HPRI-CT-1999-40003).

References

Barkana, R. et al. 1999, ApJ, 520, 479–490
Chang, T.C. & Refregier, A. 2002, ApJ, 570, 447–456
Elbaz, E. 1998, Quantum: The Quantum Theory of particles,

Fields, and Cosmology (Springer)
Narayan, R. & Bartelmann, M. 1996, Lectures on gravitational

lensing, astro-ph/9606001
Refregier, A. 2001, astro-ph/0105178
Refregier, A. & Bacon, D. 2001, astro-ph/0105179
Refregier, A., Chang, T.-C. & Bacon, D. 2002, astro-

ph/0202023


