Supermassive black holes and their hosts

Marta Volonteri

University of Michigan

- SMBHs: census and scaling relations
- Evolution of the SMBH population*
 - ➡ MBH formation
 - ➡ accretion & feedback

* with \ll 20 free parameters!

$M_{BH}\mathchar`-$ host relationships : co- evolution of SMBHs and galaxies

SMBHs: census and scaling relations

Quiescent SMBHs

BH mass → spheroid mass/ velocity dispersion

• SMBHs: census and scaling relations

• Evolution of the SMBH population

➡ MBH formation

 \rightarrow accretion & feedback

WHEN

do you make a (super)massive black hole?

The highest redshift quasar currently known SDSS 1148+3251 at z=6.4 has estimates of the SMBH mass M_{BH} =2-6 ×10⁹ M_{sun} (Willott et al 2003, Barth et al 2003)

AS LARGE AS THE LARGEST SMBHs SEEN TODAY, BUT WHEN THE UNIVERSE WAS I Gyr OLD

Stepping back in time: when did the MBH evolution start?

Hierarchical Galaxy Formation: biased MBH formation HOW can you make a

massive black hole seed?

M_{BH}~100-600 M_{sun}

M_{BH}~10³-10⁶ M_{sun}

PopIII stars remnants

(Madau & Rees 2001, Volonteri, Haardt & Madau 2003)

Simulations suggest that the first stars are massive M~100-600 M_{sun} (Abel et al., Bromm et al.)

Metal free dying stars with
M>260M_{sun} leave remnant BHs with
M_{seed} ≥ 100M_{sun}
(Fryer, Woosley & Heger)

Viscous transport

(e.g. Haehnelt & Rees 1993, Eisenstein & Loeb 1995, Bromm & Loeb 2003, Koushiappas et al. 2004)

Efficient viscous angular momentum transport + efficient gas confinement

Bar-unstable self-gravitating gas

(Begelman, Volonteri & Rees 2006)

Transport angular momentum on the dynamical timescale, process cascades

Mass function of seed MBHs

(Volonteri, Lodato & Natarajan 2007)

SMBHS are grown from seed pregalactic **BHs.** These seeds are incorporated into larger and larger halos, accreting gas and dynamically interacting after mergers.

Volonteri, Haardt & Madau 2003

The seeds at z>20 are small, ~100-10⁴ M_{sun}

How do MBH seeds grow to become supermassive? BH-BH mergers vs gas accretion

Accretion disk Infalling matter

1

Jet

Outflow

courtesy of L. Mayer

Total mass density in MBHs is almost constant in time: just reshuffle the mass function

Total mass density in MBHs grows with time

Evolution of MBHs

Mass evolution:

- @ z<3-5 Soltan's argument - accretion leads

$$\rho_{qso(0)} = 2 \div 4 \times 10^{5} [0.1(1-\epsilon)/\epsilon] M_{sun} Mpc^{-3}$$

 $\rho_{SMBH} = 2.5 \div 4.5 \times 10^{5} M_{sun} Mpc^{-3}$

Yu & Tremaine 2002, Elvis et al 2002, Merloni et al 2004

- no clues at higher z

Mass function of MBHs @ z=0

(Volonteri, Lodato & Natarajan 2007)

Observations (Greene & Ho 2007)

Note: the INACTIVE BHs mass function is an extrapolation at M<3x10⁶ M_{sun}

Direct collapse- Direct collapselow efficiency high efficiency

PopIII remnants

Occupation fraction and $M_{BH}-\sigma$ @ z=0

(Volonteri, Lodato & Natarajan 2007)

- SMBHs: census and scaling relations
- Evolution of the SMBH population
 - \rightarrow MBH formation
 - ➡ accretion & feedback

T = 0.51 Oyr T = 0.58 Oyr T = 0.55 Oyr T = 0.54 Oyr T = 0.54 Oyr T = 1.01 Oyr T = 1.01 Oyr T = 1.21 Eyr T = 0.54 Oyr T = 1.21 Oyr T = 1.21 Eyr T = 1.30 Oyr T = 1.20 Oyr T = 1.25 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.21 Eyr T = 1.30 Oyr T = 1.20 Oyr T = 1.25 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.26 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.30 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.00 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.00 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.00 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.00 Oyr T = 1.20 Oyr T = 1.20 Oyr T = 1.00 Oyr T = 1.20 Oyr T = 1.20 Oyr T	T=0210jr	T=0.32 0yr	T = 0.50 Cyr	T = 0.50 Gyr
T = 0.94 Opt T = 1.03 Opt T = 1.11 Opt T = 1.21 Opt T = 1.38 Opt T = 1.39 Opt T = 1.39 Opt T = 1.56 Opt T = 1.38 Opt T = 1.39 Opt T = 1.56 Opt T = 1.56 Opt T = 1.06 Opt T = 1.15 Opt T = 1.56 Opt T = 1.56 Opt T = 1.06 Opt T = 1.15 Opt T = 1.56 Opt T = 1.56 Opt	T=0.57 Opr	T=0.68 0 ₉ r	T=0.75 Øyr	T = 0.88 Qp
T = 1.30 Opr T = 1.30 Opr T = 1.48 Opr T = 1.56 Opr I 1.48 Opr I 1.48 Opr I I 1.48 Opr I I 1.58 Opr I 1.48 Opr I I I 1.58 Opr I 1.48 Opr I	T = 0.94 Dyr	T = 1.03 Gyr	T+1:IGF	T=1.21 Oyr
T = 1.88 Gyr T = 1.98 Gyr T = 1.98 Gyr T = 1.98 Gyr	T = 138Qe	T = 1.39 Gyr	T = 148.03T	T = 1.56 Gyr
The second se	T = 1.00 Gyr	T = 1.75 Gyr	T = 1.84 Cyr	T = 1.93 Cyr

di Matteo, Hopkins

-"Standard" numerical Bondi-Hoyle accretion

-No feedback

- turbulent motions
- extrapolation from the refined simulation

→ M. Dotti's talk

M_{BH}- hosts at high-z

SCUBA galaxies: MBH growth lags the stellar growth: adjustment

QSOs: galaxy growth lags the MBH growth: dominance

Alexander et al.2007

MBH formation: determines where MBHs are now

accretion & feedback: determine how big MBHs are now

scaling relations: help to **disentangle** the effects of accretion vs feedback vs galaxy growth