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• observations and their implications
• MHD models (semi-analytical – simulations)



Observations: jet speed
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• Superluminal apparent motion: βapp is a lower limit of real γ

• If we know both βapp =
β sin θn

1− β cos θn
and δ ≡ 1

γ (1− β cos θn)
we find β(tobs), γ(tobs), θn(tobs)
Rough estimates of δ from:
– comparison of radio and high energy emission (SSC)

e.g., for the C7 component of 3C 345 Unwin et al 1997 argue
that δ changes from ≈ 12 to ≈ 4 (tobs = 1992 – 1993) =⇒
acceleration from γ ∼ 5 to γ ∼ 10 over ∼ 3− 20 pc from the
core (θn changes from ≈ 2 to ≈ 10o)
Similarly Piner et al (2003) inferred an acceleration from
γ = 8 at R < 5.8pc to γ = 13 at R ≈ 17.4pc in 3C 279

– variability timescale (compared to the light crossing time),
Jorstad, Marscher et al.
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On the bulk acceleration

• More distant components have higher apparent speeds

• A more general argument on the acceleration (Sikora et al
2005):

? lack of bulk-Compton features → small (γ < 5) bulk Lorentz
factor at . 103rg

? the γ saturates at values ∼ a few 10 around the blazar zone
(103 − 104rg)

So, relativistic AGN jets undergo the bulk of their acceleration
on parsec scales (� size of the central black hole)

• Sikora et al 2005 also argue that the protons are the
dynamically important component in the outflow.
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On the collimation

(left Global VLBI + VSOP, right Global VLBI)

Collimation in action (at approximately 100rg) in M87. In the
formation region, the jet is seen opening widely, at an angle of
about 60 degrees, nearest the black hole, but is squeezed down
to only 6 degrees a few light-years away (Junor, Biretta, & Livio
1999; see also Krichbaum et al 2006).
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Curved trajectories

(credit: Klare et al)
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The plasma components travel on curved trajectories.

The trajectories differ from one component to the other.

They change their strength.
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Polarization

(credit: Marscher et al 2008, Nature)
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Faraday RM gradients across the jet

credit: Gomez et al 2008 – see also Gabuzda 2008
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Theory: Hydro-Dynamics

• In case ne ∼ np, γmax ∼ kTi/mpc
2 ∼ 1 even with Ti ∼ 1012K

• If ne 6= np, γmax ∼ (ne/np)× (kTi/mpc
2) could be � 1

• With some heating source, γmax � 1 is in principle possible

However, even in the last two cases, HD is unlikely to work
because the HD acceleration saturates at distances comparable
to the sonic surface where gravity is still important, i.e., very
close to the disk surface (certainly at � 103rg)

Collimation is another problem for HD
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What magnetic fields can do

? extract energy (Poynting flux)

? extract angular momentum

? transfer energy and angular momentum to matter

? explain relatively large-scale acceleration

? collimate outflows and produce jets

? needed for synchrotron emission

? explain polarization and RM maps
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How to model magnetized outflows?

? as pure electromagnetic energy (force-free, magnetodynamics,
electromagnetic outflows, Blandford & Znajek):
– ignore matter inertia (reasonable near the origin)
– this by assumption does not allow to study the transfer of
energy form Poynting to kinetic

? as magneto-hydro-dynamic flow (”Blandford & Payne”–type)
– the force-free limit is included (low inertia limit of the MHD
theory)
– MHD can also describe the back reaction from the matter to
the field (this is important even in the superfast part of the
regime where σ � 1)

It doesn’t matter if the flow is disk-driven or BH-driven. What
matters is E/Mc2 and the field distribution.
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Relativistic Magneto-Hydro-Dynamics

• Outflowing matter

• large scale electromagnetic field

• thermal pressure

We need to solve:

– Maxwell + Ohm equations
– mass + entropy conservation
– momentum equation
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(from Marscher et al)
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Basic questions: bulk acceleration

• thermal (due to ∇P ) → velocities up to Cs

• magnetocentrifugal (beads on wire - Blandford & Payne)

– initial half-opening angle ϑ > 30o

– the ϑ > 30o not necessary for nonnegligible P

– velocities up to r0Ω

• relativistic thermal (thermal fireball) gives γ ∼ ξi,
where ξ = enthalpy

mass× c2.

• magnetic

IERAPETRA 5 June 2008



All acceleration mechanisms can be seen in the energry
conservation equation

µ = ξγ +
Ω

ΨAc2
r|Bφ|

 where µ =

dE

dSdt
dM

dSdt
c2


So γ ↑ when ξ ↓ (thermal, relativistic thermal), or,
r|Bφ| ↓⇔ Ip ↓ (magnetocentrifugal, magnetic).

acceleration efficiency γ∞/µ = ?
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Basic questions: collimation

hoop-stress:

+ electric force

degree of collimation ?
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Self-similar relativistic models

• axisymmetry

• steady-state

• ideal MHD (zero resistivity)

• special relativity
The problem reduces to the two components of the momentum
equation: one along the flow (gives γ) and one in the transfield
direction (gives the field- and stream-line shape).

• boundary conditions of the form rx × f(θ) lead to separation of
variables (radial self-similarity)

– similar to the nonrelativistic model of Blandford & Payne 1982

– cold versions of the model: Li et al 1992, Contopoulos 1994
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Vlahakis & Königl 2004
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Beskin & Nokhrina 2006
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flow with parabolic shape). The acceleration is efficient, reaching
γ∞ ∼ µ.
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Simulations of relativistic jets
Komissarov, Barkov, Vlahakis, & Königl (2007)

Left panel shows density (colour) and magnetic field lines.
Right panel shows the Lorentz factor (colour) and the current lines.
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Note the difference in γ(r) for constant z.

It depends on the current I, which is related to Ω: I ≈ r2BpΩ/2
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γσ (solid line), µ (dashed line) and γ (dash-dotted line) along a magnetic field
line as a function of cylindrical radius for models C1 (left panel), C2 (middle
panel) and A2 (right panel).
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a
a

external pressure Pext = (B2 − E2)/8π

solid line: pext ∝ R−3.5 for z ∝ r, dashed line: pext ∝ R−2 for z ∝ r3/2,
dash-dotted line: pext ∝ R−1.6 for z ∝ r2, dotted line: pext ∝ R−1.1 for z ∝ r3
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(without a wall)

e.g. for Ψ = 10, ϑ = 57o → 40o

while for Ψ = 5, ϑ = 40o → 15o
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Komissarov, Vlahakis, Königl, & Barkov, in preparation

left: density/field lines, right: Lorentz factor/current lines (wall shape z ∝ r1.5)
Differential rotation → slow envelope
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Uniform rotation → γ increases with r
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γ and γσ for wall-shapes:
z ∝ r (left), z ∝ r1.5 (middle), z ∝ r2 (right)

In the conical γ ∼ rΩ/c, but small efficiency

In parabolic, Lorentz factor γ ∼ z/r ∝ r1/2 ∝ R1/3 (middle)
and γ ∼ z/r ∝ r ∝ R1/2 (right)
efficiency ∼ 50%
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θv = jet opening angle, θm = Mach-cone opening angle
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causal connection → collimation → acceleration

IERAPETRA 5 June 2008



a
a
πr2Bp∫
B · dS

=
1
2

r|∇Ψ|
Ψ

a

where Ψ =
∫

B · dS
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Jet kinematics

• due to precession? (e.g., Lobanov & Roland)

• instabilities? (e.g., Hardee, Meier)

bulk jet flow may play at least a partial role

to explore this possibility, we used the relativistic self-similar model (Vlahakis
& Königl 2004)

since the model gives the velocity (3D) field, we can follow the motion of a part
of the flow
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For θobs = 1o and φo = 0o, 60o, 120o, 180o, 240o, 300o (from top to bottom):
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Angular momentum extraction

L = µΩr2
A

where µ =

dE

dSdt
dM

dSdt
c2

= maximum Lorentz factor

So rate of angular momentum = µΩr2
AṀj

(initially carried by the field).

In the disk, rate = ΩKr2
0Ṁa.

If these are equal,
Ṁj

Ṁa

=
r2
0

µr2
A

ΩK

Ω
.

(This is equivalent to
dE

dt
≡ µṀjc

2 =
GMṀa

r0

ΩK

Ω
.)

• in YSO confirmed by HST observations! (Woitas et al 2005)
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Polarization maps
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Polarization maps
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Summary

? Magnetic driving provides a viable explanation of the dynamics
of relativistic jets:

• bulk acceleration up to Lorentz factors corresponding to
rough equipartition between kinetic and Poynting fluxes

γ∞ ≈ 0.5
E

Mc2

• collimation
parabolic shape z ∝ rβ+1 consistent with γ ∼ z/r ∝ rβ

• the intrinsic rotation of jets could be related to the observed
kinematics and to the rotation of EVPA (Marscher et al 2008,
Nature)

? The paradigm of MHD jets works in a similar way in all
astrophysical jets
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The ideal MHD equations
Maxwell:
∇ ·B = 0 ,∇×E = −∂B

c∂t
,∇×B =

4π

c
J +

∂E
c∂t

,∇ ·E =
4π

c
J0

Ohm: E +
V
c
×B = 0

mass conservation:
(

∂

∂t
+ V · ∇

)
(γρ0) + γρ0∇ ·V = 0 ,

energy UµTµν
,ν = 0:

(
∂

∂t
+ V · ∇

) (
P

ρΓ
0

)
dt = 0

momentum T νi
,ν = 0:

γρ0

(
∂

∂t
+ V · ∇

)
(ξγV) = −∇P +

J0E + J×B
c
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The ideal, steady, GRMHD equations
Maxwell:
∇ ·B = 0 ,∇× (hE) = 0 ,∇× (hB) =

4πh

c
J ,∇ ·E =

4π

c
J0

Ohm: E +
V

c
×B = 0

mass conservation: ∇ · (hγnV ) = 0 ,

energy UµTµν
;ν = 0: nV · ∇w = V · ∇P

momentum T νi
;ν = 0:

γn(V · ∇)
(

γwV

c2

)
= −γ2nw∇ lnh−∇P +

J0E + J ×B

c

IERAPETRA 5 June 2008


