Marc Schartmann

Turbulent AGN tori

MPIA/LSW:

Klaus Meisenheimer, Max Camenzind, Hubert Klahr, Sebastian Wolf, Thomas Henning, Konrad Tristram

MPE/USM:

Andreas Burkert, Martin Krause, Michaela Hirschmann, Christian Alig & CAST group

June, 5th 2008, Ierapetra, Crete

Motivation: MIDI observations & toy models

NGC 1068 & Circinus: * filamentary geometrically thick torus (brown) * thin disk (yellow) MIDI = two-beam-combiner * no direct imaging * models needed

3D Clumpy torus models (MC3D)

data courtesy: Prieto et al., 2004 NACO/HST/Timmi2/MIDI

Motivation: MIDI observations & toy models

NGC 1068 & Circinus: * filamentary geometrically thick torus (brown) * thin disk (yellow) MIDI = two-beam-combiner * no direct imaging * models needed

3D Clumpy torus models (MC3D)

data courtesy: Tristram et al., 2007 MIDI

Hydro Models of Tori - setup

main aims:

step from RT toy models (e.g. Schartmann 05, 08a) to a physical scenario
investigate effect of stellar evolution of a nuclear star cluster (6.7e8 M_{sun}) on the torus evolution (Camenzind, 1995)
separation into different evolutionary phases

Main ingredients:

 ★ after ~50 Myr: planetary nebulae major contributors to mass input (M_{ini} < 8 M_{sun}) → model discrete mass input

* average planetary nebulae mass distributed over 3³ cells,
 velocity: v_{turb} + v_{rot}

* mass loss rate = $6 \cdot 10^{-9} M_{sun} yr^{-1} M_{sun}^{-1}$ (Jungwiert et al., 2001)

Hydro Models of Tori - setup

* discrete energy input due to SN Ia explosions

* SN-rate from observations & parameter study: 10⁻¹⁰ yr⁻¹ M_{sun}⁻¹

* optically thin gas cooling (Cloudy-code)

(3,

* solve hydrodynamic
 equations with
 TRAMP / PLUTO code

effective cooling curve

Schartmann et al. 2008b
T and p complement. no pressure equilibrium
2 component model:
1. filamentary torus
2. dense, turbulent

disk

Multiphase medium evolves

temperature PDF shaped by: cooling curve: A, B, C, D, E energy input: F

Radial velocities in outer torus region

lines: averaged over orbits 8 to 10 dots: single data values in between

 * separation of radial velocities in different temperature regimes
 * fast infalling cold gas, hot gas with moderate velocity

Observables & data comparison

 * assume gas-to-dust ratio, radiative transfer calculations (MC3D) yield dust reemission SEDs and images

standard model, i=30°

crystalline forsterite

data courtesy of Weedmann et al. (2005) & Spoon (2006)

Silicate feature strength – hydrogen column density relation

* linear relation

* large scatter interpreted as sign of clumpiness of the torus/disk filamentary tori in concordance with data, our cont. models not! SINFONI observations (Davies et al. 2007) sample of 9 Seyferts:
 * nuclear star formation regions with half
 widths smaller than 50pc
 * recent star formation (50–100 Myr)
 * starburst no longer active, short-lived

example of NGC 1097:
* velocity curves of
gas & stars different
for r > 0.5" (stars spheroid, gas - thin
disk)
* r < 0.5": kinematics
of gas and stars
similar</pre>

gas & stars mixed

starburst AGN connection

* AGN switched on 50-100 Myr after the starburst
* SN & OB stars with high velocity ejecta outflow
* AGN star winds & planetary nebulae accretion

Conclusions

- trace evolution of nuclear stellar cluster: supplies gas and energy for obscuration and feeding of BH
- * two components: disk + filamentary torus, with very different characteristics, e.g. N_H column density
- ★ clumps or filaments in central part enable various silicate feature strengths (inclination dependent) over a broad range of gas column densities → good comparison with Shi et al. 2006
- * perpetual mass input circumvents scale height problem

Outlook

- * long term evolution, various phases of stellar evolution, adapt the parameters of well studied Seyfert galaxies like NGC 1068
- * detailed study of turbulent tori, stirring mechanisms: radiation, stellar winds, disc wind, ...