The X-Ray View of AGN Ionized Outflows

Fabrizio Nicastro (INAF/FORTH/CfA)

Yair Krongold (IA-UNAM) Elena Jimenez-Bailon (IA-UNAM) Martin Elvis (CfA) Nancy Brickhouse (CfA) Luc Binette (IA-UNAM) Smita Mathur (OSU)

• Winds with velocity = 500-3000 km s⁻¹ ~1/tday/yr

• Found in 50% of Seyfert 1s, PG Quasars (Reynolds,

1997; George+98, Piconcelli+05)

• Related to UV 'narrow absorption lines' - NALs

Possibly Ilbianitous in AGNs

Simple solution: 2-3 components

NGC 3783 Chandra MEG 900 ksec exposure (Krongold+03)

AGN X-Ray Outflows: 2-3 phases in pressure equilibrium?

- <u>Similar kinematical</u> properties
- No drag forces
- <u>NGC 3783, NGC 985,</u> <u>IRAS 13349, NGC4051</u>
- <u>Also NGC 5548 when</u> <u>each Vel. Comp. is</u> <u>modeled independently</u>

WA Open Questions

- Where do they arise? **10⁶ in r**! Disk wind/torus/NELR
- What is the geometry? Spherical/Bi-Conical/funnel
- Relation with other AGN components? BELR, BALs, Torus
- What are their Physical Properties?
 - Solution ⇒ Mass and KE outflow rates depends critically on wind location (0.01-1000 M_{accr})
- Cosmologically important? Feedback, Co-evolution

Time Evolving Photoionization provides insights

6/18/2008

Solution: Time Evolving Photoionization

Constrains n_e independently on U, and so constrains R

Response is not instantaneous: `Ionization time' and `Recombination time'

$$t_{eq}^{X^{i}, X^{i+1}}(t \to t + dt) \sim \left[\frac{1}{\alpha_{rec}(X^{i}, T_{e})_{eq} n_{e}}\right] \\ \times \left\{\frac{1}{\left[\alpha_{rec}(X^{i-1}, T_{e})/\alpha_{rec}(X^{i}, T_{e})\right]_{eq} + (n_{X^{i+1}}/n_{X^{i}})_{eq}}\right\}_{t+dt},$$
(5)

licastro; Aghios Nikolaos, Crete)

Following the Opacity of the WA in NGC 4051

XMM-Newton Observation

- •103 ksec
- >10x flux changes
- EPIC + RGS
- •High S/N + R

Modelled with PHASE (Krongold+03)

6/18/2008

NGC 4051 RGS Data

- Simple solution
- only 2 absorbing components (LIP and HIP)

Similar Solutions RGS and EPIC

		Abs.	EPIC (HS)	RGS (HS)		
		HIP log(U_)	-0.68+.09	-0.72+.08		
6/18/2008	AGN Workshop	$LIP\log(U_{x})$	-2.98+.15	$-2.93^{+.10}_{11}$	e)	10

NGC 4051:

2 WA components in photoionization equilibrium (Krongold et al. 2007)

log U_x(t), measured

 $\log U_x(t)$, predicted

from photoionization

equilibrium

Both WA components are DENSE and COMPACT

Comparing HS and LS data

RGS Data

4X flux increase

EPIC Data

6/18/2008

First Noted by Ogle et al. 2004

Continuous Flow Model Ruled Out The Winds must be Compact

Lower limit on LIP n_e and R

 Low Ionization Phase (LIP): in equilibrium at all times
 t_{eq}(LIP) < Δt^{ℓ,m} < 3 ks

$$\implies$$
 n_e(LIP) > 8.1 10⁷ cm⁻³

But (n_eR²)_{LIP} = 6.6 10³⁹ cm⁻¹ → R(LIP) < 8.9 x 10¹⁵cm < 0.0029 pc

6/18/2

R(LIP) < 3.5 light days

HIP n_e and R

-0.5

High Ionization Phase (HIP):

 $t_{eq}^{i,j+k}$ (HIP) > Δt^{j+k} > 10 ks (recombining)

(a) HIP

 $R(HIP) = (1.3 - 2.6) \times 10^{15} \text{ cm} = (0.5 - 1.0) \text{ light days}$

Warm Absorber (wind) Location

- - Minimum dust radius, r_{subl}(NGC4051) ~ 12-170 light-days
- R_{LIP} < 3.5 ld; R_{HIP}~0.5-1 ld: consistent Spatially co-located ?

Disk winds, on BELR scale

Cylindrical/Conical Geometry

- All Spherical configuration related to known structures are ruled out.
- Thin spherical shells are still possible, but implausible (need fine-tuning not to degenerate into a continuous flow: which is ruled out): testable by reobserving NGC 4051
- Next simpler symmetry: cylindrical (or bi-conical): consistent with all our findings

Mass Outflow Rates vs Mass Accretion Rate for NGC 4051 $\dot{M}_{out} = 0.8\pi m_p (n_e R^2) [v_r / \cos(\varphi - \delta)] \times [(\Delta R / R)^2 + 2(\Delta R / R)] \cos^2 \delta \sin \varphi$

For $\varphi = 90^{\circ}$ and $\delta = 30^{\circ}$ we measure: $\dot{M}_{LIP} < 0.9 \times 10^{-4} M_{\odot} \text{ yr}^{-1} = 0.02 \dot{M}_{accr}$ $\dot{M}_{HIP} = (0.7-1.4) \times 10^{-4} \text{ M}_{\odot} \text{ yr}^{-1} = (0.02-0.03) \dot{M}_{accr}$

> $\dot{M}_{out} = (0.02-0.05) \dot{M}_{accr}$ KP = (3-8)x10³⁷ erg s⁻¹

> > (assuming $v = 2v_r = 1000 \text{ km s}^{-1}$)

6/18/2008

AGN Workshop 2008 (F. Nicastro; Aghios Nikolaos, Crete)

AGN-Feedback from NGC 4051

Assuming $M_{BH}^{NGC4051}$ ~ 2x10⁶ M_{\odot} all accreted

 $M_{out} = (0.02-0.05)M_{BH} = (0.4-1) \times 10^5 M_{\odot}$ Unimportant for IGM metal-feeding

 $KE_{aval} \approx$ (0.4-1) x 10⁵³ ergs

 $\lesssim 10^{55}$ ergs required to unbound hot ISM and inhibit large-scale star formation $_{(e.g.\ Hopkins+06)}$

May control star-formation

<< ~10⁶⁰ ergs required to control host-galaxy and surrounding-IGM evolution (e.g. Natarajan+06)

Unimportant for M_{BH} - σ

But NGC 4051 LOW M_{BH} and L_{BOL}

SUZAKU Monitoring Campaign of NGC 5548

6/18/2008

WA properties constrained through Chandra HR data

2 Velocity Components

Each modeled with 2 absorbers

HV: V~1100 km/s SHIP & HIP

LV: V~500 km/s HIP & LIP

800 ksec MEG & LEG exposure (Andrade-Velazquez+08: SEE POSTER)

NGC 5548 Absorbing Components Suzaku Light Curve 2 Counts s⁻¹ 0.5 2 SHIP does not log U_x(t) Log respond SHIP (HV) measured 0.5 1.5 HIP in PE only **ö** 0.5 HIP $\log U_{x}(t)$ in average flux (HV+LV) 0 predicted at PE 0 LIP in PE -0.5 D Log LIP (LV) -1 **Always** -1.5 6/18/2008 22 1000 2000 3000 4000 0 Time (ks)

Wind Locations and Mass Rates (Assuming NGC 4051 empty bi-conical geometry)

SHIP (HV) t_{eq} > 2 Msec

 $n_e < 5.4 \text{ x } 10^5 \text{ cm}^{-3}$

R > 0.2 pc ~ 30000 R_G HIP(HV+LV)

 $t_{eq} \sim 0.5$ -1 Msec

 $n_e < 0.8-2.6 \ 10^5 \ cm^{-3}$

R ~ 0.7 – 1.6 pc

 $t_{eq} < 0.6$ Msec

 $n_e > 1.0 \ x \ 10^5 \ cm^{-3}$

R(LIP) < 3.1 pc

 $\dot{M}_{out} > 2.5 \,\dot{M}_{accr}$ (0.2 M_o yr⁻¹) KP > 1.2 x 10⁴¹ ergs S⁻¹ (assuming v = 2v_r = 1000 km s⁻¹) Much more massive & energetic than NGC 4051

AGN-Feedback from NGC 5548

Assuming $M_{BH}^{NGC5548}$ = 7x10⁷ M_o, all accreted

$$M_{out} = \sim 2.5 M_{BH} = 1.8 \times 10^8 M_{\odot}$$

Metal-feeds the IGM

 $KE_{aval} \approx 3.3 \times 10^{57} ergs$

>> 10⁵⁵ ergs required to unbound hot ISM and inhibit large-scale star formation (e.g. Hopkins+06) Unbinds hot ISM and stop star-formation << ~10⁶⁰ ergs required to control host-galaxy and surrounding-IGM evolution (e.g. Natarajan+06)

Unimportant for $M_{BH}\text{-}\sigma$

NGC 5548 still LOW M_{BH} and L_{BOL}

Conclusions

• AGN X-ray Outflows are:

- **Disk winds** (NGC 4051 + NGC 5548)
- Dense, compact, and multi-phase (possibly in pressure balance)

• Location & Geometry:

- NELR and Torus are ruled out as Originating locations (too far)
- Continuous Flow is ruled out (WA are seen varying)
- Spherical geometry is (almost) ruled out
- Conical (cylindrical) geometry works:
 - $N_{\rm H}$ down cone > 10 x $N_{\rm H}$ observed, possibility NALs=BALs (Krongold et al., 2007)
 - Consistent with transverse motion evidence (UV data: REF.)
- Feedback: NGC 4051 + NGC 5584 results imply (speculative!!!):
 - Large Mass and Energy deposited into Bulge/IGM, if scales with L_{bol}
 - Important for IGM Metal-feeding
 - Control Start-Formation
 - Regulate MBH-σ
- More Objects needed