

"Weighing" black holes from 0 to high-z

Alessandro Marconi

Dipartimento di Astronomia e Scienza dello Spazio Università di Firenze

In collaboration with:

David Axon Roberto Maiolino Tohru Nagao Guia Pastorini Paola Pietrini Andrew Robinson Guidetta Torricelli

BH-galaxy scaling relations

Kormendy & Richstone 1995; Magorrian+ 1998; Ferrarese & Merritt 2000, Gebhardt+ 2000;

Graham+2001; Tremaine+ 2002; Marconi & Hunt 2003; Haring & Rix 2004; Aller & Richstone 2007; Graham 2008 The discovery of M_{BH} -host spheroid relations (especially M_{BH} - σ) has produced an enormous impact

★ allowed "census of BHs" (eg ρ_{BH}) → local BHs are AGN "relics";

 ★ indication of a tight link BH - host galaxy → importance of AGN feedback → an AGN (growing BH) is a phase in galaxy life.

★ redshift evolution of М_{ВН}-galaxy relations can constraint BH growth and galaxy evolutionary models.

Fundamental to measure M_{BH} at ALL redshifts!

BH mass ladder

Direct BH mass measurements

BH sphere of influence

$$r_{BH} = \frac{G M_{BH}}{\sigma_{\star}^2} = 10.7 \,\mathrm{pc} \left(\frac{M_{BH}}{10^8 M_{\odot}}\right) \left(\frac{\sigma_{\star}}{200 \,\mathrm{km/s}}\right)^{-2}$$
$$\theta_{BH} = 0.11'' \left(\frac{M_{BH}}{10^8 M_{\odot}}\right) \left(\frac{\sigma_{\star}}{200 \,\mathrm{km/s}}\right)^{-2} \left(\frac{D}{20 \,\mathrm{Mpc}}\right)^{-2}$$

BHs are directly detectable with spatially resolved kinematics ONLY in the local universe

Need to calibrate indirect BH mass estimators like for the cosmological distance ladder

BH mass ladder

The BH mass ladder

(Peterson 2002)

SE virial masses $M_{BH} = \tilde{f} V^2 L^{\alpha}$

RM virial masses $M_{BH} = f V^2 R_{BLR}/G$

Gas & Stellar Kinematics

- 1. Spatially resolved gas & stellar kinematics
- 2. Virial masses based on Reverberation Mapping (RM) observations ($R_{BLR} = c T$, T time lag of BLR emission lines, eg. Onken +04)
- Virial masses based on Single Epoch (SE) spectra (R from continuum luminosity using R_{BLR}-L relation by Kaspi +00, +05, eg Vestergaard & Peterson 06)

Virial MBH: Calibration $\rightarrow f$ $M_{BH} = f \frac{V^2 R}{G}$

Vestergaard & Peterson 06

Onken +04: calibrate M_{BH} for RM AGNs assuming they lie on M_{BH} - σ

Vestergaard & Peterson 06: M_{BH} for SE AGNs calibrating from RM data

The effect of radiation pressure

Scattering of radiation from free electrons \rightarrow Eddington limit. BLR clouds are photoionized \rightarrow radiation force due to the absorption of ionizing photons much larger than from Thomson scattering. Consider:

optically thick BLR clouds;

Thomson scattering for nonionizing photons (optically thin);

Then corrected virial mass is:

$$M_{BH} = f \frac{V^2 r}{G} + \frac{L}{L_{\rm Edd}} \left[1 \right]$$

$$a + \frac{a}{\sigma_{\rm T} N_{\rm H}} \bigg] \, {\rm M}_{\odot}$$

$$=\frac{L_{ion}}{L}$$

 \mathcal{A}

Close to L_{Edd} , M_{BH} can increase by factor ~10. But what is the correction for radiation pressure (eg N_H)? Calibrate virial BH masses using:

$$M_{BH} = f \frac{V^2 r}{G} + g \left(\frac{\lambda L_{\lambda}(5100)}{10^{44} \, \mathrm{erg \, s^{-1}}} \right)$$

BH mass ladder

NEW Calibration of virial MBH: RM

$$M_{BH} = f \frac{V^2 r}{G}$$

$$M_{BH} = f \frac{V^2 r}{G} + g \left(\frac{\lambda L_{\lambda}(5100)}{10^{44} \,\mathrm{erg}\,\mathrm{s}^{-1}} \right)$$

10

9

8

6

1.8

log M_{BH} [M_☉]

 $f = 3.1 \pm 1.4$ $\log g = 7.6 \pm 0.3$

High L Quasars

 $\log \sigma [km/s]$

2.2

2.0

NEW

2.4

 $f = 4.8 \pm 1.3$ $f = 3.7 \pm 1.0 \ (L/L_{Edd} < 0.05)$

BH mass ladder

NEW Calibration of virial MBH: SE

$M_{BH} = f V_{1000}^2 L_{44}(5100)^{0.5} = f V_{1000}^2 L_{44}(5100)^{0.5} + g L_{44}(5100)^{0.5}$

8

Narrow Line Seyfert 1 Galaxies

Seyfert 1 galaxies with "narrow" broad lines (FWHM<2000 km/s) They are believed to have:

high L/L_{Edd};

BH mass ladder

small black holes compared to other "normal" AGNs [Grupe 2004];
small black holes compared to expectations of M_{BH}-σ [Mathur+2001,Grupe & Mathur 2004, Zhou+2006, Ryan+2007, see however Komossa & Xu 2007, Decarli +07].
Hence, these galaxies are now rapidly building their BHs.
However ... high L/L_{Edd} suggest that radiation pressure is important!

Radiation pressure

High L Quasars

Narrow Line Seyfert 1 Galaxies

MgII and CIV

Broad UV lines to estimate BH masses at high z: MgII λ2800 Å, CIV λ1550 Å (eg. McLure & Jarvis 2002, McLure & Dunlop 2004, Netzer+2007, Vestergaard & Peterson 2006).

CIV is believed to be a bad M_{BH} estimator (winds, outflows ...)

Calibrate using samples of QSOs from SDSS with both H β and MgII λ 2800 Å or MgII and CIV λ 1550 Å in their spectra (from Shen +08).

W/O rad. press.

Radiation pressure

W/ rad. press.

High L Quasars

BH mass ladder)

Two important points ...

SDSS quasars from Shen +08:

On average, M_{BH} is at most a factor ~3 larger

L/L_{Edd} saturates at high luminosities (M_{BH}~gL)

BH mass ladder

Radiation pressure

High L Quasars

Why is the scatter reduced?

Virial theorem provides: $f \frac{V^2 r}{G} = M_{\rm BH} - M_{\rm BH}$

L/L_{Edd} saturates at L_{crit}/L_{Edd}

Radiation pressure

 $= M_{\rm BH} - 2.9 \times 10^8 \,\mathrm{M_{\odot}} \left(\frac{L}{10^{12} \,\mathrm{L_{\odot}}}\right)$

Effective BH mass seen by BLR is much smaller than real one in high L sources; $M_{BH} \sim L$, scatter is due to scatter in luminosity ratio!

 $\frac{(L)}{L_{\rm Edd,\odot}} \left[1 - a + \frac{a}{\sigma_{\rm T} N_{\rm H}} \right]$

PROBLEM:

in high L objects radiation pressure shields > 90% of M_{BH} gravitational field, is virial assumption still viable?

UNLESS:

Anisotropy of continuum emission Or very large column densities of BLR clouds at high L (N_H ~10²⁵ cm⁻²)

BH mass ladder)

(High L Quasars)

M_{BH} - σ relation of local AGN

BH mass ladder

Radiation pressure

High L Quasars

14

Conclusions

- Virial BH masses can be severely underestimated if the radiation pressure by ionizing photons is neglected.
- \star A "tentative" calibration suggests optically thick BLR clouds with average N_H~10²³ cm⁻² consistent with independent estimates.
- \star A better database is needed.
- \approx RM BH masses have ~0.5 dex average error.
- Discrepancy between RM BH masses and SE BH masses is much lower than previously thought (0.2 dex vs 0.4 dex rms).
- Radiation pressure can explain the low BH masses in NL Seyfert 1 galaxies.
- ★ Little changes in M_{BH} except for objects close to "classical" Eddington limit.
- \star Is L/L_{Edd} meaningful in high luminosity objects?
- ★ At high L, BLR appear to see only a tiny fraction of gravitational field, is radiation pressure effect overestimated (i.e. N_H larger at high L) or BLR unbound (a wind)?